Skip to main content
Top

14-10-2016 | Hematologic cancers | Article

T-cell lymphomas, a challenging disease: types, treatments, and future

Journal: International Journal of Clinical Oncology

Authors: Helen Ma, Maher Abdul-Hay

Publisher: Springer Japan

Abstract

T-cell lymphomas are rare and aggressive malignancies associated with poor outcome, often because of the development of resistance in the lymphoma against chemotherapy as well as intolerance in patients to the established and toxic chemotherapy regimens. In this review article, we discuss the epidemiology, pathophysiology, current standard of care, and future treatments of common types of T-cell lymphomas, including adult T-cell leukemia/lymphoma, angioimmunoblastic T-cell lymphoma, anaplastic large-cell lymphoma, aggressive NK/T-cell lymphoma, and cutaneous T-cell lymphoma.
Literature
1.
Uchiyama T, Yodoi J, Sagawa K et al (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50:481–492PubMed
2.
Takatsuki K (2005) Discovery of adult T-cell leukemia. Retrovirology 2:16PubMedPubMedCentralCrossRef
3.
Ohshima K (2015) Molecular pathology of adult T-cell leukemia/lymphoma. Oncology 89(Suppl 1):7–15PubMedCrossRef
4.
Wang SS, Vose JM (2013) T-cell lymphomas. Springer Science + Business Media, New York
5.
Vose J, Armitage J, Weisenburger D, International TCLP (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130PubMedCrossRef
6.
Shimoyama M (1991) Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol 79:428–437PubMedCrossRef
7.
Kondo T, Kono H, Miyamoto N et al (1989) Age- and sex-specific cumulative rate and risk of ATLL for HTLV-I carriers. Int J Cancer 43:1061–1064PubMedCrossRef
8.
Chihara D, Ito H, Katanoda K et al (2012) Increase in incidence of adult T-cell leukemia/lymphoma in non-endemic areas of Japan and the United States. Cancer Sci 103:1857–1860PubMedCrossRef
9.
Kataoka K, Nagata Y, Kitanaka A et al (2015) Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 47:1304–1315PubMedCrossRef
10.
Matsuoka M, Jeang KT (2011) Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 30:1379–1389PubMedCrossRef
11.
Nakagawa M, Schmitz R, Xiao W et al (2014) Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma. J Exp Med 211:2497–2505PubMedPubMedCentralCrossRef
12.
Nagata Y, Kontani K, Enami T et al (2016) Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood 127(5):596–604PubMedCrossRef
13.
Lymphoma Study Group (1991) Major prognostic factors of patients with adult T-cell leukemia-lymphoma: a cooperative study. Leuk Res 15:81–90CrossRef
14.
van Zaanen HC, Pegels JG (2002) Adult T-cell leukaemia and lymphoma: report of two cases and a brief review of the literature. Neth J Med 60:330–333PubMed
15.
Yasunaga J, Matsuoka M (2007) Human T-cell leukemia virus type I induces adult T-cell leukemia: from clinical aspects to molecular mechanisms. Cancer Control 14:133–140PubMed
16.
Marcais A, Suarez F, Sibon D et al (2013) Therapeutic options for adult T-cell leukemia/lymphoma. Curr Oncol Rep 15:457–464PubMedCrossRef
17.
Ratner L, Harrington W, Feng X et al (2009) Human T cell leukemia virus reactivation with progression of adult T-cell leukemia-lymphoma. PLoS One 4:e4420PubMedPubMedCentralCrossRef
18.
Yamada Y, Tomonaga M, Fukuda H et al (2001) A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. Br J Haematol 113:375–382PubMedCrossRef
19.
Tsukasaki K, Utsunomiya A, Fukuda H et al (2007) VCAP–AMP–VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol 25:5458–5464PubMedCrossRef
20.
Kchour G, Tarhini M, Kooshyar MM et al (2009) Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood 113:6528–6532PubMedCrossRef
21.
Kchour G, Rezaee R, Farid R et al (2013) The combination of arsenic, interferon-alpha, and zidovudine restores an “immunocompetent-like” cytokine expression profile in patients with adult T-cell leukemia lymphoma. Retrovirology 10:91PubMedPubMedCentralCrossRef
22.
Bazarbachi A, Plumelle Y, Carlos Ramos J et al (2010) Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol 28:4177–4183PubMedCrossRef
23.
Fukushima T, Miyazaki Y, Honda S et al (2005) Allogeneic hematopoietic stem cell transplantation provides sustained long-term survival for patients with adult T-cell leukemia/lymphoma. Leukemia 19:829–834PubMedCrossRef
24.
Utsunomiya A, Miyazaki Y, Takatsuka Y et al (2001) Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 27:15–20PubMedCrossRef
25.
Okamura J, Utsunomiya A, Tanosaki R et al (2005) Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/lymphoma. Blood 105:4143–4145PubMedCrossRef
26.
Ishida T, Hishizawa M, Kato K et al (2012) Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood 120:1734–1741PubMedCrossRef
27.
Katsuya H, Ishitsuka K, Utsunomiya A et al (2015) Treatment and survival among 1594 patients with ATL. Blood 126(24):2570–2577PubMedCrossRef
28.
Fuji S, Fujiwara H, Nakano N et al (2015) Early application of related SCT might improve clinical outcome in adult T-cell leukemia/lymphoma. Bone Marrow Transplant 51(2):205–211PubMedCrossRef
29.
Ishida T, Hishizawa M, Kato K et al (2013) Impact of graft-versus-host disease on allogeneic hematopoietic cell transplantation for adult T cell leukemia-lymphoma focusing on preconditioning regimens: nationwide retrospective study. Biol Blood Marrow Transplant 19:1731–1739PubMedCrossRef
30.
Yamasaki R, Miyazaki Y, Moriuchi Y et al (2007) Small number of HTLV-1-positive cells frequently remains during complete remission after allogeneic hematopoietic stem cell transplantation that are heterogeneous in origin among cases with adult T-cell leukemia/lymphoma. Leukemia 21:1212–1217PubMedCrossRef
31.
Ishida T, Utsunomiya A, Iida S et al (2003) Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res 9:3625–3634PubMed
32.
Ishida T, Joh T, Uike N et al (2012) Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 30:837–842PubMedCrossRef
33.
Sugio T, Kato K, Aoki T et al (2016) mogamulizumab treatment prior to allogeneic hematopoietic stem cell transplantation induces severe acute graft-versus-host disease. Biol Blood Marrow Transplant 22:1608–1614PubMedCrossRef
34.
Ishida T, Jo T, Takemoto S et al (2015) Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study. Br J Haematol 169:672–682PubMedPubMedCentralCrossRef
35.
Bai XT, Moles R, Chaib-Mezrag H et al (2015) Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells. J Hematol Oncol 8:117PubMedPubMedCentralCrossRef
36.
Frizzera G, Moran EM, Rappaport H (1974) Angio-immunoblastic lymphadenopathy with dysproteinaemia. Lancet 1:1070–1073PubMedCrossRef
37.
Ocampo-Garza J, Herz-Ruelas ME, Gonzalez-Lopez EE et al (2014) Angioimmunoblastic T-cell lymphoma: a diagnostic challenge. Case Rep Dermatol 6:291–295PubMedPubMedCentralCrossRef
38.
Balaraman B, Conley JA, Sheinbein DM (2011) Evaluation of cutaneous angioimmunoblastic T-cell lymphoma. J Am Acad Dermatol 65:855–862PubMedCrossRef
39.
Miladi A, Thomas BC, Beasley K et al (2015) Angioimmunoblastic t-cell lymphoma presenting as purpura fulminans. Cutis 95:113–115PubMed
40.
de Leval L, Parrens M, Le Bras F et al (2015) Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets. Haematologica 100:e361–e364PubMedPubMedCentralCrossRef
41.
Kameoka Y, Takahashi N, Itou S et al (2015) Analysis of clinical characteristics and prognostic factors for angioimmunoblastic T-cell lymphoma. Int J Hematol 101:536–542PubMedCrossRef
42.
Savage KJ, Chhanabhai M, Gascoyne RD et al (2004) Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol 15:1467–1475PubMedCrossRef
43.
Tobinai K, Minato K, Ohtsu T et al (1988) Clinicopathologic, immunophenotypic, and immunogenotypic analyses of immunoblastic lymphadenopathy-like T-cell lymphoma. Blood 72:1000–1006PubMed
44.
Dogan A, Attygalle AD, Kyriakou C (2003) Angioimmunoblastic T-cell lymphoma. Br J Haematol 121:681–691PubMedCrossRef
45.
Sasaki TY, Sumida KN (2000) Angioimmunoblastic T-cell lymphoma (AIL-TCL) following macrolide administration. Hawaii Med J 59(44–7):56
46.
Oka K, Nagayama R, Yatabe Y et al (2010) Angioimmunoblastic T-cell lymphoma with autoimmune thrombocytopenia: a report of two cases. Pathol Res Pract 206:270–275PubMedCrossRef
47.
Weiss LM, Jaffe ES, Liu XF et al (1992) Detection and localization of Epstein–Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood 79:1789–1795PubMed
48.
Zhou Y, Attygalle AD, Chuang SS et al (2007) Angioimmunoblastic T-cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br J Haematol 138:44–53PubMedCrossRef
49.
Khan G, Norton AJ, Slavin G (1993) Epstein–Barr virus in angioimmunoblastic T-cell lymphomas. Histopathology 22:145–149PubMedCrossRef
50.
Vrsalovic MM, Korac P, Dominis M et al (2004) T- and B-cell clonality and frequency of human herpes viruses-6, -8 and Epstein Barr virus in angioimmunoblastic T-cell lymphoma. Hematol Oncol 22:169–177PubMedCrossRef
51.
Attygalle AD, Chuang SS, Diss TC et al (2007) Distinguishing angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified, using morphology, immunophenotype and molecular genetics. Histopathology 50:498–508PubMedCrossRef
52.
Attygalle AD, Kyriakou C, Dupuis J et al (2007) Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol 31:1077–1088PubMedCrossRef
53.
Sallah S, Gagnon GA (1998) Angioimmunoblastic lymphadenopathy with dysproteinemia: emphasis on pathogenesis and treatment. Acta Haematol 99:57–64PubMedCrossRef
54.
Ondrejka SL, Grzywacz B, Bodo J et al (2015) Angioimmunoblastic T-cell lymphomas with the RHOA p.Gly17Val mutation have classic clinical and pathologic features. Am J Surg Pathol 40(3):335–341CrossRef
55.
Sakata-Yanagimoto M, Enami T, Yoshida K et al (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46:171–175PubMedCrossRef
56.
Quivoron C, Couronne L, Della Valle V et al (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20:25–38PubMedCrossRef
57.
Cairns RA, Iqbal J, Lemonnier F et al (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119:1901–1903PubMedPubMedCentralCrossRef
58.
Churchill H, Naina H, Boriack R et al (2015) Discordant intracellular and plasma D-2-hydroxyglutarate levels in a patient with IDH2 mutated angioimmunoblastic T-cell lymphoma. Int J Clin Exp Pathol 8:11753–11759PubMedPubMedCentral
59.
Muto H, Sakata-Yanagimoto M, Nagae G et al (2014) Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice. Blood Cancer J 4:e264PubMedPubMedCentralCrossRef
60.
Lemonnier F, Couronne L, Parrens M et al (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120:1466–1469PubMedCrossRef
61.
Odejide O, Weigert O, Lane AA et al (2014) A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123:1293–1296PubMedPubMedCentralCrossRef
62.
Wang C, McKeithan TW, Gong Q et al (2015) IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126:1741–1752PubMedPubMedCentralCrossRef
63.
Jain S, Chen J, Nicolae A et al (2015) IL-21-driven neoplasms in SJL mice mimic some key features of human angioimmunoblastic T-cell lymphoma. Am J Pathol 185:3102–3114PubMedPubMedCentralCrossRef
64.
Attygalle A, Al-Jehani R, Diss TC et al (2002) Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood 99:627–633PubMedCrossRef
65.
de Leval L, Rickman DS, Thielen C et al (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109:4952–4963PubMedCrossRef
66.
Lee SH, Kim JS, Kim J et al (2015) A highly recurrent novel missense mutation in CD28 among angioimmunoblastic T-cell lymphoma patients. Haematologica 100(12):e505–e507PubMedPubMedCentralCrossRef
67.
Grogg KL, Attygalle AD, Macon WR et al (2006) Expression of CXCL13, a chemokine highly upregulated in germinal center T-helper cells, distinguishes angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified. Mod Pathol 19:1101–1107PubMed
68.
Dorfman DM, Brown JA, Shahsafaei A et al (2006) Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 30:802–810PubMedPubMedCentralCrossRef
69.
Baseggio L, Berger F, Morel D et al (2006) Identification of circulating CD10 positive T cells in angioimmunoblastic T-cell lymphoma. Leukemia 20:296–303PubMedCrossRef
70.
Baseggio L, Traverse-Glehen A, Berger F et al (2011) CD10 and ICOS expression by multiparametric flow cytometry in angioimmunoblastic T-cell lymphoma. Mod Pathol 24:993–1003PubMedCrossRef
71.
Lee SS, Rudiger T, Odenwald T et al (2003) Angioimmunoblastic T cell lymphoma is derived from mature T-helper cells with varying expression and loss of detectable CD4. Int J Cancer 103:12–20PubMedCrossRef
72.
Marafioti T, Paterson JC, Ballabio E et al (2010) The inducible T-cell co-stimulator molecule is expressed on subsets of T cells and is a new marker of lymphomas of T follicular helper cell-derivation. Haematologica 95:432–439PubMedPubMedCentralCrossRef
73.
Mourad N, Mounier N, Briere J et al (2008) Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood 111:4463–4470PubMedPubMedCentralCrossRef
74.
Grogg KL, Attygalle AD, Macon WR et al (2005) Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 106:1501–1502PubMedPubMedCentralCrossRef
75.
Rodriguez-Justo M, Attygalle AD, Munson P et al (2009) Angioimmunoblastic T-cell lymphoma with hyperplastic germinal centres: a neoplasia with origin in the outer zone of the germinal centre? Clinicopathological and immunohistochemical study of 10 cases with follicular T-cell markers. Mod Pathol 22:753–761PubMed
76.
Reddemann K, Gola D, Schillert A et al (2015) Dysregulation of microRNAs in angioimmunoblastic T-cell lymphoma. Anticancer Res 35:2055–2061PubMed
77.
Bajor-Dattilo EB, Pittaluga S, Jaffe ES (2013) Pathobiology of T-cell and NK-cell lymphomas. Best Pract Res Clin Haematol 26:75–87PubMedPubMedCentralCrossRef
78.
Tokunaga T, Shimada K, Yamamoto K et al (2012) Retrospective analysis of prognostic factors for angioimmunoblastic T-cell lymphoma: a multicenter cooperative study in Japan. Blood 119:2837–2843PubMedCrossRef
79.
Reiser M, Josting A, Soltani M et al (2002) T-cell non-Hodgkin’s lymphoma in adults: clinicopathological characteristics, response to treatment and prognostic factors. Leuk Lymphoma 43:805–811PubMedCrossRef
80.
Pautier P, Devidas A, Delmer A et al (1999) Angioimmunoblastic-like T-cell non Hodgkin’s lymphoma: outcome after chemotherapy in 33 patients and review of the literature. Leuk Lymphoma 32:545–552PubMedCrossRef
81.
Pfreundschuh M, Trumper L, Kloess M et al (2004) Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 104:634–641PubMedCrossRef
82.
Pfreundschuh M, Trumper L, Kloess M et al (2004) Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of young patients with good-prognosis (normal LDH) aggressive lymphomas: results of the NHL-B1 trial of the DSHNHL. Blood 104:626–633PubMedCrossRef
83.
Trumper L, Zwick C, Ziepert M et al (2008) Dose-escalated CHOEP for the treatment of young patients with aggressive non-Hodgkin’s lymphoma: I. A randomized dose escalation and feasibility study with bi- and tri-weekly regimens. Ann Oncol 19:538–544PubMedCrossRef
84.
Schmitz N, Trumper L, Ziepert M et al (2010) Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood 116:3418–3425PubMedCrossRef
85.
Sung HJ, Kim SJ, Seo HY et al (2006) Prospective analysis of treatment outcome and prognostic factors in patients with T-cell lymphomas treated by CEOP-B: single institutional study. Br J Haematol 134:45–53PubMedCrossRef
86.
Wilson WH, Bryant G, Bates S et al (1993) EPOCH chemotherapy: toxicity and efficacy in relapsed and refractory non-Hodgkin’s lymphoma. J Clin Oncol 11:1573–1582PubMed
87.
Schetelig J, Fetscher S, Reichle A et al (2003) Long-term disease-free survival in patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation. Haematologica 88:1272–1278PubMed
88.
Reimer P, Schertlin T, Rudiger T et al (2004) Myeloablative radiochemotherapy followed by autologous peripheral blood stem cell transplantation as first-line therapy in peripheral T-cell lymphomas: first results of a prospective multicenter study. Hematol J 5:304–311PubMedCrossRef
89.
Reimer P, Rudiger T, Geissinger E et al (2009) Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol 27:106–113PubMedCrossRef
90.
Siegert W, Agthe A, Griesser H et al (1992) Treatment of angioimmunoblastic lymphadenopathy (AILD)-type T-cell lymphoma using prednisone with or without the COPBLAM/IMVP-16 regimen. A multicenter study. Kiel Lymphoma Study Group. Ann Intern Med 117:364–370PubMedCrossRef
91.
Oki Y, Younes A, Copeland A et al (2013) Phase I study of vorinostat in combination with standard CHOP in patients with newly diagnosed peripheral T-cell lymphoma. Br J Haematol 162:138–141PubMedCrossRef
92.
O’Connor OA, Horwitz S, Masszi T et al (2015) Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol 33:2492–2499PubMedPubMedCentralCrossRef
93.
Sawas A, Radeski D, O’Connor OA (2015) Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther Adv Hematol 6:202–208PubMedPubMedCentralCrossRef
94.
Velasquez WS, Cabanillas F, Salvador P et al (1988) Effective salvage therapy for lymphoma with cisplatin in combination with high-dose Ara-C and dexamethasone (DHAP). Blood 71:117–122PubMed
95.
Philip T, Chauvin F, Armitage J et al (1991) Parma international protocol: pilot study of DHAP followed by involved-field radiotherapy and BEAC with autologous bone marrow transplantation. Blood 77:1587–1592PubMed
96.
Velasquez WS, McLaughlin P, Tucker S et al (1994) ESHAP–an effective chemotherapy regimen in refractory and relapsing lymphoma: a 4-year follow-up study. J Clin Oncol 12:1169–1176PubMed
97.
Yang J, Shi Y, He X et al (2014) Efficacy and safety evaluation of gemcitabine combined with oxaliplatin in lymphoma patients after failure of multiple chemotherapy regimens. Zhonghua Zhong Liu Za Zhi 36:137–140PubMed
98.
Yao YY, Tang Y, Zhu Q et al (2013) Gemcitabine, oxaliplatin and dexamethasone as salvage treatment for elderly patients with refractory and relapsed peripheral T-cell lymphoma. Leuk Lymphoma 54:1194–1200PubMedCrossRef
99.
Park BB, Kim WS, Suh C et al (2015) Salvage chemotherapy of gemcitabine, dexamethasone, and cisplatin (GDP) for patients with relapsed or refractory peripheral T-cell lymphomas: a consortium for improving survival of lymphoma (CISL) trial. Ann Hematol 94:1845–1851PubMedCrossRef
100.
Damaj G, Gressin R, Bouabdallah K et al (2013) Results from a prospective, open-label, phase II trial of bendamustine in refractory or relapsed T-cell lymphomas: the BENTLY trial. J Clin Oncol 31:104–110PubMedCrossRef
101.
Binder C, Ziepert M, Pfreundschuh M et al (2013) CHO(E)P-14 followed by alemtuzumab consolidation in untreated peripheral T cell lymphomas: final analysis of a prospective phase II trial. Ann Hematol 92:1521–1528PubMedPubMedCentralCrossRef
102.
Kim SJ, Yoon DH, Kang HJ et al (2012) Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: a multicentre, single-arm, phase 2 trial. Eur J Cancer 48:3223–3231PubMedCrossRef
103.
Francisco JA, Cerveny CG, Meyer DL et al (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465PubMedCrossRef
104.
Fanale MA, Horwitz SM, Forero-Torres A et al (2014) Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol 32:3137–3143PubMedPubMedCentralCrossRef
105.
Horwitz SM, Advani RH, Bartlett NL et al (2014) Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood 123:3095–3100PubMedPubMedCentralCrossRef
106.
Marchi E, Mangone M, Zullo K et al (2013) Pralatrexate pharmacology and clinical development. Clin Cancer Res 19:6657–6661PubMedCrossRef
107.
O’Connor OA, Pro B, Pinter-Brown L et al (2011) Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol 29:1182–1189PubMedPubMedCentralCrossRef
108.
Advani RH, Ansell SM, Lechowicz MJ et al (2015) A phase II study of cyclophosphamide, etoposide, vincristine and prednisone (CEOP) Alternating with Pralatrexate (P) as front line therapy for patients with peripheral T-cell lymphoma (PTCL): final results from the T-cell consortium trial. Br J Haematol 172(4):535–544PubMedCrossRef
109.
Stein H, Mason DY, Gerdes J et al (1985) The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed–Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66:848–858PubMed
110.
Penny RJ, Blaustein JC, Longtine JA et al (1991) Ki-1-positive large cell lymphomas, a heterogenous group of neoplasms. Morphologic, immunophenotypic, genotypic, and clinical features of 24 cases. Cancer 68:362–373PubMedCrossRef
111.
Sterry W, Korte B, Schubert C (1989) Pleomorphic T-cell lymphoma and large-cell anaplastic lymphoma of the skin. A morphological, immunophenotypical, and ultrastructural study of two typical cases. Am J Dermatopathol 11:112–123PubMedCrossRef
112.
Morra E, Rosso R, Lazzarino M et al (1989) Adult Ki-1-positive large cell anaplastic lymphoma presenting with skin lesions. Acta Haematol 81:51–55PubMedCrossRef
113.
Ralfkiaer E, Thomsen K, Agdal N et al (1989) The development of a Ki-1-positive large cell non-Hodgkin’s lymphoma in pagetoid reticulosis. Acta Derm Venereol 69:206–211PubMed
114.
Chan JK, Ng CS, Hui PK et al (1989) Anaplastic large cell Ki-1 lymphoma. Delineation of two morphological types. Histopathology 15:11–34PubMedCrossRef
115.
Ebo D, Van Hoof A (1992) Large cell anaplastic lymphoma (Ki-1 lymphoma). Acta Clin Belg 47:170–177PubMedCrossRef
116.
Banerjee SS, Heald J, Harris M (1991) Twelve cases of Ki-1 positive anaplastic large cell lymphoma of skin. J Clin Pathol 44:119–125PubMedPubMedCentralCrossRef
117.
Tsukamoto N, Morita K, Maehara T et al (1992) Ki-1-positive large-cell anaplastic lymphoma with protean manifestations including central nervous system involvement. Acta Haematol 88:147–150PubMedCrossRef
118.
Feldges A, Gerhard L, Reinhardt V et al (1992) Primary cerebral anaplastic T-cell-lymphoma (type Ki-1): review and case report. Clin Neuropathol 11:55–59PubMed
119.
Keech JA Jr, Creech BJ (1997) Anaplastic T-cell lymphoma in proximity to a saline-filled breast implant. Plast Reconstr Surg 100:554–555PubMedCrossRef
120.
Talwalkar SS, Miranda RN, Valbuena JR et al (2008) Lymphomas involving the breast: a study of 106 cases comparing localized and disseminated neoplasms. Am J Surg Pathol 32:1299–1309PubMedCrossRef
121.
Clemens MW, Medeiros LJ, Butler CE et al (2015) Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J Clin Oncol 34(2):160–168PubMedPubMedCentralCrossRef
122.
Hall PA, d’Ardenne AJ, Stansfeld AG (1988) Paraffin section immunohistochemistry. II. Hodgkin’s disease and large cell anaplastic (Ki1) lymphoma. Histopathology 13:161–169PubMedCrossRef
123.
Vecchi V, Burnelli R, Pileri S et al (1993) Anaplastic large cell lymphoma (Ki-1+/CD30+) in childhood. Med Pediatr Oncol 21:402–410PubMedCrossRef
124.
Leoncini L, Del Vecchio MT, Kraft R et al (1990) Hodgkin’s disease and CD30-positive anaplastic large cell lymphomas–a continuous spectrum of malignant disorders. A quantitative morphometric and immunohistologic study. Am J Pathol 137:1047–1057PubMedPubMedCentral
125.
Rosso R, Paulli M, Magrini U et al (1990) Anaplastic large cell lymphoma, CD30/Ki-1 positive, expressing the CD15/Leu-M1 antigen. Immunohistochemical and morphological relationships to Hodgkin’s disease. Virchows Arch A Pathol Anat Histopathol 416:229–235PubMedCrossRef
126.
Schwarting R, Gerdes J, Durkop H et al (1989) BER-H2: a new anti-Ki-1 (CD30) monoclonal antibody directed at a formol-resistant epitope. Blood 74:1678–1689PubMed
127.
Piris M, Brown DC, Gatter KC et al (1990) CD30 expression in non-Hodgkin’s lymphoma. Histopathology 17:211–218PubMedCrossRef
128.
Carbone A, Gloghini A, De Re V et al (1990) Histopathologic, immunophenotypic, and genotypic analysis of Ki-1 anaplastic large cell lymphomas that express histiocyte-associated antigens. Cancer 66:2547–2556PubMedCrossRef
129.
Nakamura S, Takagi N, Kojima M et al (1991) Clinicopathologic study of large cell anaplastic lymphoma (Ki-1-positive large cell lymphoma) among the Japanese. Cancer 68:118–129PubMedCrossRef
130.
van Krieken JH, Elwood L, Andrade RE et al (1991) Rearrangement of the T-cell receptor delta chain gene in T-cell lymphomas with a mature phenotype. Am J Pathol 139:161–168PubMedPubMedCentral
131.
Gustmann C, Altmannsberger M, Osborn M et al (1991) Cytokeratin expression and vimentin content in large cell anaplastic lymphomas and other non-Hodgkin’s lymphomas. Am J Pathol 138:1413–1422PubMedPubMedCentral
132.
Delsol G, Blancher A, al Saati T et al (1991) Antibody BNH9 detects red blood cell-related antigens on anaplastic large cell (CD30+) lymphomas. Br J Cancer 64:321–326PubMedPubMedCentralCrossRef
133.
Delabie J, Shipman R, Bruggen J et al (1992) Expression of the novel intermediate filament-associated protein restin in Hodgkin’s disease and anaplastic large-cell lymphoma. Blood 80:2891–2896PubMed
134.
Ohshima K, Kikuchi M, Masuda Y et al (1990) Genotypic and immunophenotypic analysis of anaplastic large cell lymphoma (Ki-1 lymphoma). Pathol Res Pract 186:582–588PubMedCrossRef
135.
Falini B, Pileri S, Stein H et al (1990) Variable expression of leucocyte-common (CD45) antigen in CD30 (Ki1)-positive anaplastic large-cell lymphoma: implications for the differential diagnosis between lymphoid and nonlymphoid malignancies. Hum Pathol 21:624–629PubMedCrossRef
136.
Xerri L, Horschowski N, Payan MJ et al (1990) Genotypic analysis in large cell lymphomas expressing a restricted set of differentiation antigens. Pathol Res Pract 186:317–325PubMedCrossRef
137.
Pearson JM, Borg-Grech A (1991) Primary Ki-1 (CD 30)-positive, large cell, anaplastic lymphoma of the esophagus. Cancer 68:418–421PubMedCrossRef
138.
Greer JP, Kinney MC, Collins RD et al (1991) Clinical features of 31 patients with Ki-1 anaplastic large-cell lymphoma. J Clin Oncol 9:539–547PubMed
139.
Rimokh R, Magaud JP, Berger F et al (1989) A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). Br J Haematol 71:31–36PubMedCrossRef
140.
Le Beau MM, Bitter MA, Larson RA et al (1989) The t(2;5)(p23;q35): a recurring chromosomal abnormality in Ki-1-positive anaplastic large cell lymphoma. Leukemia 3:866–870PubMed
141.
Mason DY, Bastard C, Rimokh R et al (1990) CD30-positive large cell lymphomas (‘Ki-1 lymphoma’) are associated with a chromosomal translocation involving 5q35. Br J Haematol 74:161–168PubMedCrossRef
142.
Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284PubMedCrossRef
143.
Stein H, Foss HD, Durkop H et al (2000) CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96:3681–3695PubMed
144.
Pulford K, Lamant L, Morris SW et al (1997) Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 89:1394–1404PubMed
145.
Shiota M, Nakamura S, Ichinohasama R et al (1995) Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood 86:1954–1960PubMed
146.
Pittaluga S, Wlodarska I, Pulford K et al (1997) The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am J Pathol 151:343–351PubMedPubMedCentral
147.
Li JF, Li GD, Gu L et al (2008) Study on activation of AKT/mTOR pathway in anaplastic large cell lymphoma. Zhonghua Xue Ye Xue Za Zhi 29:649–653PubMed
148.
Shiota M, Mori S (1997) Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Leukemia 11(Suppl 3):538–540PubMed
149.
Savage KJ, Harris NL, Vose JM et al (2008) ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 111:5496–5504PubMedCrossRef
150.
Falini B, Martelli MP (2009) Anaplastic large cell lymphoma: changes in the World Health Organization classification and perspectives for targeted therapy. Haematologica 94:897–900PubMedPubMedCentralCrossRef
151.
Sakata-Yanagimoto M, Chiba S (2015) Molecular pathogenesis of peripheral T cell lymphoma. Curr Hematol Malig Rep 10:429–437PubMedCrossRef
152.
Pham-Ledard A, Prochazkova-Carlotti M, Laharanne E et al (2010) IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: a study of 54 cases. J Invest Dermatol 130:816–825PubMedCrossRef
153.
Wada DA, Law ME, Hsi ED et al (2011) Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Pathol 24:596–605PubMedCrossRef
154.
Feldman AL, Law M, Remstein ED et al (2009) Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 23:574–580PubMedCrossRef
155.
Kaudewitz P, Stein H, Dallenbach F et al (1989) Primary and secondary cutaneous Ki-1+ (CD30+) anaplastic large cell lymphomas. Morphologic, immunohistologic, and clinical-characteristics. Am J Pathol 135:359–367PubMedPubMedCentral
156.
de Jong D, Vasmel WL, de Boer JP et al (2008) Anaplastic large-cell lymphoma in women with breast implants. JAMA 300:2030–2035PubMedCrossRef
157.
Laurent C, Delas A, Gaulard P et al (2015) Breast implant associated anaplastic large cell lymphoma: two distinct clinicopathological variants with different outcomes. Ann Oncol 27(2):306–314PubMedPubMedCentralCrossRef
158.
Bizjak M, Selmi C, Praprotnik S et al (2015) Silicone implants and lymphoma: the role of inflammation. J Autoimmun 65:64–73PubMedCrossRef
159.
Audouin J, Le Tourneau A, Diebold J et al (1989) Primary intestinal lymphoma of Ki-1 large cell anaplastic type with mesenteric lymph node and spleen involvement in a renal transplant recipient. Hematol Oncol 7:441–449PubMedCrossRef
160.
Ng K, Trotter J, Metcalf C et al (1992) Extranodal Ki-1 lymphoma in a renal transplant patient. Aust N Z J Med 22:51–53PubMedCrossRef
161.
Gonzalez-Clemente JM, Ribera JM, Campo E et al (1991) Ki-1+ anaplastic large-cell lymphoma of T-cell origin in an HIV-infected patient. AIDS 5:751–755PubMedCrossRef
162.
Ross CW, Schlegelmilch JA, Grogan TM et al (1992) Detection of Epstein–Barr virus genome in Ki-1 (CD30)-positive, large-cell anaplastic lymphomas using the polymerase chain reaction. Am J Pathol 141:457–465PubMedPubMedCentral
163.
Herbst H, Stein H (1993) Tumor viruses in CD30-positive anaplastic large cell lymphomas. Leuk Lymphoma 9:321–328PubMedCrossRef
164.
Li R, Morris SW (2008) Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 28:372–412PubMedCrossRef
165.
Ceccon M, Mologni L, Giudici G et al (2015) Treatment efficacy and resistance mechanisms using the second-generation ALK inhibitor AP26113 in human NPM-ALK-positive anaplastic large cell lymphoma. Mol Cancer Res 13:775–783PubMedCrossRef
166.
Zinzani PL, Bendandi M, Martelli M et al (1996) Anaplastic large-cell lymphoma: clinical and prognostic evaluation of 90 adult patients. J Clin Oncol 14:955–962PubMed
167.
Dunleavy K, Pittaluga S, Shovlin M et al (2015) Phase II trial of dose-adjusted EPOCH in untreated systemic anaplastic large cell lymphoma. Haematologica 101(1):e27–e29PubMedCrossRef
168.
Peng YL, Huang HQ, Lin XB (2004) et al [Clinical outcomes of patients with peripheral T-cell lymphoma (PTCL) treated by EPOCH regimen]. Ai Zheng 23:943–946PubMed
169.
Zamkoff KW, Matulis MD, Mehta AC et al (2004) High-dose therapy and autologous stem cell transplant does not result in long-term disease-free survival in patients with recurrent chemotherapy-sensitive ALK-negative anaplastic large-cell lymphoma. Bone Marrow Transplant 33:635–638PubMedCrossRef
170.
Le Gouill S, Milpied N, Buzyn A et al (2008) Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol 26:2264–2271PubMedCrossRef
171.
Illidge T, Bouabdallah R, Chen R et al (2015) Allogeneic transplant following brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Leuk Lymphoma 56:703–710PubMedCrossRef
172.
Gambacorti-Passerini C, Messa C, Pogliani EM (2011) Crizotinib in anaplastic large-cell lymphoma. N Engl J Med 364:775–776PubMedCrossRef
173.
Gambacorti Passerini C, Farina F, Stasia A et al (2014) Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst 106:djt378PubMedCrossRef
174.
Sasaki T, Koivunen J, Ogino A et al (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71:6051–6060PubMedPubMedCentralCrossRef
175.
Zou HY, Friboulet L, Kodack DP et al (2015) PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell 28:70–81PubMedPubMedCentralCrossRef
176.
Mologni L, Ceccon M, Pirola A et al (2015) NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922. Oncotarget 6:5720–5734PubMedPubMedCentralCrossRef
177.
Mologni L (2015) Expanding the portfolio of anti-ALK weapons. Transl Lung Cancer Res 4:5–7PubMedPubMedCentral
178.
Kretzner L, Scuto A, Dino PM et al (2011) Combining histone deacetylase inhibitor vorinostat with aurora kinase inhibitors enhances lymphoma cell killing with repression of c-Myc, hTERT, and microRNA levels. Cancer Res 71:3912–3920PubMedPubMedCentralCrossRef
179.
Chen R, Hou J, Newman E et al (2015) CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther 14:1376–1384PubMedPubMedCentralCrossRef
180.
Imamura N, Kusunoki Y, Kajihara H et al (1988) Aggressive natural killer cell leukemia/lymphoma with N901-positive surface phenotype: evidence for the existence of a third lineage in lymphoid cells. Acta Haematol 80:121–128PubMedCrossRef
181.
Wong KF, Chan JK, Ng CS et al (1992) CD56 (NKH1)-positive hematolymphoid malignancies: an aggressive neoplasm featuring frequent cutaneous/mucosal involvement, cytoplasmic azurophilic granules, and angiocentricity. Hum Pathol 23:798–804PubMedCrossRef
182.
Li YX, Wang H, Jin J et al (2012) Radiotherapy alone with curative intent in patients with stage I extranodal nasal-type NK/T-cell lymphoma. Int J Radiat Oncol Biol Phys 82:1809–1815PubMedCrossRef
183.
Emile JF, Boulland ML, Haioun C et al (1996) CD5-CD56+ T-cell receptor silent peripheral T-cell lymphomas are natural killer cell lymphomas. Blood 87:1466–1473PubMed
184.
Kwong YL, Chan AC, Liang R et al (1997) CD56+ NK lymphomas: clinicopathological features and prognosis. Br J Haematol 97:821–829PubMedCrossRef
185.
Jaffe ES (1996) Classification of natural killer (NK) cell and NK-like T-cell malignancies. Blood 87:1207–1210PubMed
186.
Au WY, Weisenburger DD, Intragumtornchai T et al (2009) Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood 113:3931–3937PubMedCrossRef
187.
Asano N, Kato S, Nakamura S (2013) Epstein–Barr virus-associated natural killer/T-cell lymphomas. Best Pract Res Clin Haematol 26:15–21PubMedCrossRef
188.
Harabuchi Y, Yamanaka N, Kataura A et al (1990) Epstein–Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 335:128–130PubMedCrossRef
189.
Jaffe ES (1995) Nasal and nasal-type T/NK cell lymphoma: a unique form of lymphoma associated with the Epstein–Barr virus. Histopathology 27:581–583PubMedCrossRef
190.
Gru AA, Haverkos BH, Freud AG et al (2015) The Epstein–Barr virus (EBV) in T cell and NK cell lymphomas: time for a reassessment. Curr Hematol Malig Rep 10:456–467PubMedPubMedCentralCrossRef
191.
Suzuki R, Yamaguchi M, Izutsu K et al (2011) Prospective measurement of Epstein–Barr virus-DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood 118:6018–6022PubMedCrossRef
192.
Kwong YL, Chan AC, Liang RH (1997) Natural killer cell lymphoma/leukemia: pathology and treatment. Hematol Oncol 15:71–79PubMedCrossRef
193.
Zhang X, Zhao L, Li X et al (2015) ATP-binding cassette sub-family C member 4 (ABCC4) is overexpressed in human NK/T-cell lymphoma and regulates chemotherapy sensitivity: potential as a functional therapeutic target. Leuk Res 39:1448–1454PubMedCrossRef
194.
Suzuki R, Suzumiya J, Yamaguchi M et al (2010) Prognostic factors for mature natural killer (NK) cell neoplasms: aggressive NK cell leukemia and extranodal NK cell lymphoma, nasal type. Ann Oncol 21:1032–1040PubMedCrossRef
195.
Yamaguchi M, Kita K, Miwa H et al (1995) Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells. Cancer 76:2351–2356PubMedCrossRef
196.
Drenou B, Lamy T, Amiot L et al (1997) CD3- CD56+ non-Hodgkin’s lymphomas with an aggressive behavior related to multidrug resistance. Blood 89:2966–2974PubMed
197.
Tse E, Kwong YL (2013) How I treat NK/T-cell lymphomas. Blood 121:4997–5005PubMed
198.
Yamaguchi M, Tobinai K, Oguchi M et al (2009) Phase I/II study of concurrent chemoradiotherapy for localized nasal natural killer/T-cell lymphoma: Japan Clinical Oncology Group Study JCOG0211. J Clin Oncol 27:5594–5600PubMedCrossRef
199.
Kim SJ, Kim K, Kim BS et al (2009) Phase II trial of concurrent radiation and weekly cisplatin followed by VIPD chemotherapy in newly diagnosed, stage IE to IIE, nasal, extranodal NK/T-cell lymphoma: consortium for improving survival of lymphoma study. J Clin Oncol 27:6027–6032PubMedCrossRef
200.
Lin N, Song Y, Zheng W et al (2013) A prospective phase II study of l-asparaginase- CHOP plus radiation in newly diagnosed extranodal NK/T-cell lymphoma, nasal type. J Hematol Oncol 6:44PubMedPubMedCentralCrossRef
201.
Michot JM, Mazeron R, Danu A et al (2015) Concurrent etoposide, steroid, high-dose Ara-C and platinum chemotherapy with radiation therapy in localised extranodal natural killer (NK)/T-cell lymphoma, nasal type. Eur J Cancer 51:2386–2395PubMedCrossRef
202.
Oh D, Ahn YC, Kim SJ et al (2015) Concurrent chemoradiation therapy followed by consolidation chemotherapy for localized extranodal natural killer/T-cell lymphoma, nasal type. Int J Radiat Oncol Biol Phys 93:677–683PubMedCrossRef
203.
Jiang M, Zhang H, Jiang Y et al (2012) Phase 2 trial of “sandwich” l-asparaginase, vincristine, and prednisone chemotherapy with radiotherapy in newly diagnosed, stage IE to IIE, nasal type, extranodal natural killer/T-cell lymphoma. Cancer 118:3294–3301PubMedCrossRef
204.
Wang L, Wang ZH, Chen XQ et al (2013) First-line combination of gemcitabine, oxaliplatin, and l-asparaginase (GELOX) followed by involved-field radiation therapy for patients with stage IE/IIE extranodal natural killer/T-cell lymphoma. Cancer 119:348–355PubMedCrossRef
205.
Bi XW, Xia Y, Zhang WW et al (2015) Radiotherapy and PGEMOX/GELOX regimen improved prognosis in elderly patients with early-stage extranodal NK/T-cell lymphoma. Ann Hematol 94:1525–1533PubMedCrossRef
206.
Huang MJ, Jiang Y, Liu WP et al (2008) Early or up-front radiotherapy improved survival of localized extranodal NK/T-cell lymphoma, nasal-type in the upper aerodigestive tract. Int J Radiat Oncol Biol Phys 70:166–174PubMedCrossRef
207.
Kim M, Kim TM, Kim KH et al (2015) Ifosfamide, methotrexate, etoposide, and prednisolone (IMEP) plus l-asparaginase as a first-line therapy improves outcomes in stage III/IV NK/T cell-lymphoma, nasal type (NTCL). Ann Hematol 94:437–444PubMedCrossRef
208.
Yamaguchi M, Kwong YL, Kim WS et al (2011) Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell Tumor Study Group study. J Clin Oncol 29:4410–4416PubMedCrossRef
209.
Jaccard A, Gachard N, Marin B et al (2011) Efficacy of l-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 117:1834–1839PubMedCrossRef
210.
Suzuki R, Suzumiya J, Nakamura S et al (2006) Hematopoietic stem cell transplantation for natural killer-cell lineage neoplasms. Bone Marrow Transplant 37:425–431PubMedCrossRef
211.
Fox CP, Boumendil A, Schmitz N et al (2015) High-dose therapy and autologous stem cell transplantation for extra-nodal NK/T lymphoma in patients from the Western hemisphere: a study from the European Society for Blood and Marrow Transplantation. Leuk Lymphoma 56:3295–3300PubMedCrossRef
212.
Wing MG, Moreau T, Greenwood J et al (1996) Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells. J Clin Invest 98:2819–2826PubMedPubMedCentralCrossRef
213.
Yan ZX, Wu LL, Xue K et al (2014) MicroRNA187 overexpression is related to tumor progression and determines sensitivity to bortezomib in peripheral T-cell lymphoma. Leukemia 28:880–887PubMedCrossRef
214.
Bose P, Batalo MS, Holkova B et al (2014) Bortezomib for the treatment of non-Hodgkin’s lymphoma. Expert Opin Pharmacother 15:2443–2459PubMedPubMedCentralCrossRef
215.
Tan D, Phipps C, Hwang WY et al (2015) Panobinostat in combination with bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma: an open-label, multicentre phase 2 trial. Lancet Haematol 2:e326–e333PubMedCrossRef
216.
Ganjoo K, Hong F, Horning SJ et al (2014) Bevacizumab and cyclosphosphamide, doxorubicin, vincristine and prednisone in combination for patients with peripheral T-cell or natural killer cell neoplasms: an Eastern Cooperative Oncology Group study (E2404). Leuk Lymphoma 55:768–772PubMedCrossRef
217.
O’Mahony D, Morris JC, Stetler-Stevenson M et al (2009) EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res 15:2514–2522PubMedCrossRef
218.
Lutzner M, Edelson R, Schein P et al (1975) Cutaneous T-cell lymphomas: the Sezary syndrome, mycosis fungoides, and related disorders. Ann Intern Med 83:534–552PubMedCrossRef
219.
Bradford PT, Devesa SS, Anderson WF et al (2009) Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood 113:5064–5073PubMedPubMedCentralCrossRef
220.
Scarisbrick JJ, Prince HM, Vermeer MH et al (2015) Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sezary Syndrome: effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model. J Clin Oncol 33:3766–3773PubMedPubMedCentralCrossRef
221.
Wilcox RA (2015) Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 91(1):151–165PubMedPubMedCentralCrossRef
222.
Lessin SR (2009) Alibert lymphoma: renaming mycosis fungoides. Arch Dermatol 145:209–210PubMedCrossRef
223.
Abel EA, Wood GS, Hoppe RT (1993) Mycosis fungoides: clinical and histologic features, staging, evaluation, and approach to treatment. CA Cancer J Clin 43:93–115PubMedCrossRef
224.
Dulmage BO, Akilov O, Vu JR et al (2015) Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget. doi:10.​18632/​oncotarget.​5742 PubMed
225.
Tan RS, Butterworth CM, McLaughlin H et al (1974) Mycosis fungoides–a disease of antigen persistence. Br J Dermatol 91:607–616PubMedCrossRef
226.
Wieser I, Oh CW, Talpur R et al (2016) Lymphomatoid papulosis: treatment response and associated lymphomas in a study of 180 patients. J Am Acad Dermatol 74:59–67PubMedCrossRef
227.
Edelson RL, Smith RW, Frank MM et al (1973) Identification of subpopulations of mononuclear cells in cutaneous infiltrates. I. Differentiation between B cells, T cells, and histiocytes. J Invest Dermatol 61:82–89PubMedCrossRef
228.
Zucker WH, Shermer RW, Mason RG (1974) Ultrastructural comparison of human platelets separated from blood by various means. Am J Pathol 77:255–267PubMedPubMedCentral
229.
Campbell JJ, Clark RA, Watanabe R et al (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116:767–771PubMedPubMedCentralCrossRef
230.
Heid JB, Schmidt A, Oberle N et al (2009) FOXP3+ CD25 tumor cells with regulatory function in Sezary syndrome. J Invest Dermatol 129:2875–2885PubMedCrossRef
231.
Gonzalez BR, Zain J, Rosen ST et al (2016) Tumor microenvironment in mycosis fungoides and Sezary syndrome. Curr Opin Oncol 28:88–96CrossRef
232.
Magro CM, Crowson AN, Kovatich AJ et al (2003) Drug-induced reversible lymphoid dyscrasia: a clonal lymphomatoid dermatitis of memory and activated T cells. Hum Pathol 34:119–129PubMedCrossRef
233.
Assaf C, Hwang ST (2015) Mac attack: macrophages as key drivers of cutaneous T cell lymphoma pathogenesis. Exp Dermatol 25(2):105–106CrossRef
234.
Jackow CM, Cather JC, Hearne V et al (1997) Association of erythrodermic cutaneous T-cell lymphoma, superantigen-positive Staphylococcus aureus, and oligoclonal T-cell receptor V beta gene expansion. Blood 89:32–40PubMed
235.
McFadden JP, Noble WC, Camp RD (1993) Superantigenic exotoxin-secreting potential of staphylococci isolated from atopic eczematous skin. Br J Dermatol 128:631–632PubMedCrossRef
236.
Mirvish ED, Pomerantz RG, Geskin LJ (2011) Infectious agents in cutaneous T-cell lymphoma. J Am Acad Dermatol 64:423–431PubMedCrossRef
237.
Dulmage BO, Feng H, Mirvish E et al (2015) Black cat in a dark room: the absence of a directly oncogenic virus does not eliminate the role of an infectious agent in cutaneous T-cell lymphoma pathogenesis. Br J Dermatol 172:1449–1451PubMedPubMedCentralCrossRef
238.
Bazarbachi A, Soriano V, Pawson R et al (1997) Mycosis fungoides and Sezary syndrome are not associated with HTLV-I infection: an international study. Br J Haematol 98:927–933PubMedCrossRef
239.
Jahan-Tigh RR, Huen AO, Lee GL et al (2013) Hydrochlorothiazide and cutaneous T cell lymphoma: prospective analysis and case series. Cancer 119:825–831PubMedCrossRef
240.
Sommer VH, Clemmensen OJ, Nielsen O et al (2004) In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 18:1288–1295PubMedCrossRef
241.
Nielsen M, Kaltoft K, Nordahl M et al (1997) Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA 94:6764–6769PubMedPubMedCentralCrossRef
242.
Wu J, Nihal M, Siddiqui J et al (2009) Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Invest Dermatol 129:1165–1173PubMedCrossRef
243.
Aliahmad P, Kaye J (2008) Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med 205:245–256PubMedPubMedCentralCrossRef
244.
Sterry W, Mielke V, Konter U (1992) Role of beta 1-integrins in epidermotropism of malignant T cells. Am J Pathol 141:855–860PubMedPubMedCentral
245.
Su D, Xu H, Feng J et al (2012) PDCD6 is an independent predictor of progression free survival in epithelial ovarian cancer. J Transl Med 10:31PubMedPubMedCentralCrossRef
246.
da Silva Almeida AC, Abate F, Khiabanian H et al (2015) The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet 47:1465–1470PubMedPubMedCentralCrossRef
247.
Ito M, Teshima K, Ikeda S et al (2014) MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6, in advanced cutaneous T-cell lymphoma. Blood 123:1499–1511PubMedCrossRef
248.
Kitadate A, Ikeda S, Teshima K et al (2015) MicroRNA-16 mediates the regulation of a senescence-apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene 35(28):3692–3704PubMedCrossRef
249.
Thangavelu M, Finn WG, Yelavarthi KK et al (1997) Recurring structural chromosome abnormalities in peripheral blood lymphocytes of patients with mycosis fungoides/Sezary syndrome. Blood 89:3371–3377PubMed
250.
Edinger JT, Clark BZ, Pucevich BE et al (2009) CD30 expression and proliferative fraction in nontransformed mycosis fungoides. Am J Surg Pathol 33:1860–1868PubMedPubMedCentralCrossRef
251.
Willemze R, Jaffe ES, Burg G et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105:3768–3785PubMedCrossRef
252.
Zackheim HS, Kashani-Sabet M, Amin S (1998) Topical corticosteroids for mycosis fungoides. Experience in 79 patients. Arch Dermatol 134:949–954PubMedCrossRef
253.
Zackheim HS (2003) Treatment of patch-stage mycosis fungoides with topical corticosteroids. Dermatol Ther 16:283–287PubMedCrossRef
254.
Kim YH, Martinez G, Varghese A et al (2003) Topical nitrogen mustard in the management of mycosis fungoides: update of the Stanford experience. Arch Dermatol 139:165–173PubMed
255.
Lessin SR, Duvic M, Guitart J et al (2013) Topical chemotherapy in cutaneous T-cell lymphoma: positive results of a randomized, controlled, multicenter trial testing the efficacy and safety of a novel mechlorethamine, 0.02%, gel in mycosis fungoides. JAMA Dermatol 149:25–32PubMedPubMedCentralCrossRef
256.
Wilson LD, Kacinski BM, Jones GW (1998) Local superficial radiotherapy in the management of minimal stage IA cutaneous T-cell lymphoma (Mycosis Fungoides). Int J Radiat Oncol Biol Phys 40:109–115PubMedCrossRef
257.
Thomas TO, Agrawal P, Guitart J et al (2013) Outcome of patients treated with a single-fraction dose of palliative radiation for cutaneous T-cell lymphoma. Int J Radiat Oncol Biol Phys 85:747–753PubMedCrossRef
258.
Breneman D, Duvic M, Kuzel T et al (2002) Phase 1 and 2 trial of bexarotene gel for skin-directed treatment of patients with cutaneous T-cell lymphoma. Arch Dermatol 138:325–332PubMedCrossRef
259.
Gathers RC, Scherschun L, Malick F et al (2002) Narrowband UVB phototherapy for early-stage mycosis fungoides. J Am Acad Dermatol 47:191–197PubMedCrossRef
260.
Olsen EA, Hodak E, Anderson T et al (2016) Guidelines for phototherapy of mycosis fungoides and Sezary syndrome: a consensus statement of the United States Cutaneous Lymphoma Consortium. J Am Acad Dermatol 74:27–58PubMedCrossRef
261.
Querfeld C, Rosen ST, Kuzel TM et al (2005) Long-term follow-up of patients with early-stage cutaneous T-cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch Dermatol 141:305–311PubMedCrossRef
262.
Ponte P, Serrao V, Apetato M (2010) Efficacy of narrowband UVB vs. PUVA in patients with early-stage mycosis fungoides. J Eur Acad Dermatol Venereol 24:716–721PubMedCrossRef
263.
Chinn DM, Chow S, Kim YH (1999) Total skin electron beam therapy with or without adjuvant topical nitrogen mustard or nitrogen mustard alone as initial treatment of T2 and T3 mycosis fungoides. Int J Radiat Oncol Biol Phys 43:951–958PubMedCrossRef
264.
Ysebaert L, Truc G, Dalac S et al (2004) Ultimate results of radiation therapy for T1–T2 mycosis fungoides (including reirradiation). Int J Radiat Oncol Biol Phys 58:1128–1134PubMedCrossRef
265.
Hoppe RT, Harrison C, Tavallaee M et al (2015) Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: results of a pooled analysis from 3 phase-II clinical trials. J Am Acad Dermatol 72:286–292PubMedCrossRef
266.
Elsayad K, Kriz J, Moustakis C et al (2015) Total skin electron beam for primary cutaneous T-cell lymphoma. Int J Radiat Oncol Biol Phys 93:1077–1086PubMedCrossRef
267.
Harrison C, Young J, Navi D et al (2011) Revisiting low-dose total skin electron beam therapy in mycosis fungoides. Int J Radiat Oncol Biol Phys 81:e651–e657PubMedCrossRef
268.
Duvic M, Martin AG, Kim Y et al (2001) Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma. Arch Dermatol 137:581–593PubMed
269.
Duvic M, Hymes K, Heald P et al (2001) Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II–III trial results. J Clin Oncol 19:2456–2471PubMed
270.
Talpur R, Ward S, Apisarnthanarax N et al (2002) Optimizing bexarotene therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol 47:672–684PubMedCrossRef
271.
Straus DJ, Duvic M, Kuzel T et al (2007) Results of a phase II trial of oral bexarotene (Targretin) combined with interferon alfa-2b (Intron-A) for patients with cutaneous T-cell lymphoma. Cancer 109:1799–1803PubMedCrossRef
272.
Olsen EA, Rosen ST, Vollmer RT et al (1989) Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. J Am Acad Dermatol 20:395–407PubMedCrossRef
273.
Jumbou O, N’Guyen JM, Tessier MH et al (1999) Long-term follow-up in 51 patients with mycosis fungoides and Sezary syndrome treated by interferon-alfa. Br J Dermatol 140:427–431PubMedCrossRef
274.
Olsen EA (2003) Interferon in the treatment of cutaneous T-cell lymphoma. Dermatol Ther 16:311–321PubMedCrossRef
275.
Wu J, Wood GS (2011) Reduction of Fas/CD95 promoter methylation, upregulation of Fas protein, and enhancement of sensitivity to apoptosis in cutaneous T-cell lymphoma. Arch Dermatol 147:443–449PubMedCrossRef
276.
Aviles A, Nambo MJ, Neri N et al (2007) Interferon and low dose methotrexate improve outcome in refractory mycosis fungoides/Sezary syndrome. Cancer Biother Radiopharm 22:836–840PubMedCrossRef
277.
Rupoli S, Goteri G, Pulini S et al (2005) Long-term experience with low-dose interferon-alpha and PUVA in the management of early mycosis fungoides. Eur J Haematol 75:136–145PubMedCrossRef
278.
Stadler R, Otte HG, Luger T et al (1998) Prospective randomized multicenter clinical trial on the use of interferon-2a plus acitretin versus interferon-2a plus PUVA in patients with cutaneous T-cell lymphoma stages I and II. Blood 92:3578–3581PubMed
279.
Kuzel TM, Roenigk HH Jr, Samuelson E et al (1995) Effectiveness of interferon alfa-2a combined with phototherapy for mycosis fungoides and the Sezary syndrome. J Clin Oncol 13:257–263PubMed
280.
Piekarz RL, Frye R, Turner M et al (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27:5410–5417PubMedPubMedCentralCrossRef
281.
Whittaker SJ, Demierre MF, Kim EJ et al (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28:4485–4491PubMedCrossRef
282.
Duvic M, Talpur R, Ni X et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39PubMedPubMedCentralCrossRef
283.
Olsen EA, Kim YH, Kuzel TM et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25:3109–3115PubMedCrossRef
284.
Duvic M, Olsen EA, Breneman D et al (2009) Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin Lymphoma Myeloma 9:412–416PubMedCrossRef
285.
Edelson R, Berger C, Gasparro F et al (1987) Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med 316:297–303PubMedCrossRef
286.
Zic JA, Stricklin GP, Greer JP et al (1996) Long-term follow-up of patients with cutaneous T-cell lymphoma treated with extracorporeal photochemotherapy. J Am Acad Dermatol 35:935–945PubMedCrossRef
287.
Zic JA (2003) The treatment of cutaneous T-cell lymphoma with photopheresis. Dermatol Ther 16:337–346PubMedCrossRef
288.
Wilson LD, Jones GW, Kim D et al (2000) Experience with total skin electron beam therapy in combination with extracorporeal photopheresis in the management of patients with erythrodermic (T4) mycosis fungoides. J Am Acad Dermatol 43:54–60PubMedCrossRef
289.
Raphael BA, Shin DB, Suchin KR et al (2011) High clinical response rate of Sezary syndrome to immunomodulatory therapies: prognostic markers of response. Arch Dermatol 147:1410–1415PubMedCrossRef
290.
Zackheim HS, Kashani-Sabet M, Hwang ST (1996) Low-dose methotrexate to treat erythrodermic cutaneous T-cell lymphoma: results in twenty-nine patients. J Am Acad Dermatol 34:626–631PubMedCrossRef
291.
Zackheim HS, Kashani-Sabet M, McMillan A (2003) Low-dose methotrexate to treat mycosis fungoides: a retrospective study in 69 patients. J Am Acad Dermatol 49:873–878PubMedCrossRef
292.
Wollina U, Dummer R, Brockmeyer NH et al (2003) Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 98:993–1001PubMedCrossRef
293.
Quereux G, Marques S, Nguyen JM et al (2008) Prospective multicenter study of pegylated liposomal doxorubicin treatment in patients with advanced or refractory mycosis fungoides or Sezary syndrome. Arch Dermatol 144:727–733PubMedCrossRef
294.
Dummer R, Quaglino P, Becker JC et al (2012) Prospective international multicenter phase II trial of intravenous pegylated liposomal doxorubicin monochemotherapy in patients with stage IIB, IVA, or IVB advanced mycosis fungoides: final results from EORTC 21012. J Clin Oncol 30:4091–4097PubMedCrossRef
295.
Duvic M, Talpur R, Wen S et al (2006) Phase II evaluation of gemcitabine monotherapy for cutaneous T-cell lymphoma. Clin Lymphoma Myeloma 7:51–58PubMedCrossRef
296.
Marchi E, Alinari L, Tani M et al (2005) Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: phase II study of 32 patients. Cancer 104:2437–2441PubMedCrossRef
297.
Zinzani PL, Baliva G, Magagnoli M et al (2000) Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol 18:2603–2606PubMed
298.
Cummings FJ, Kim K, Neiman RS et al (1991) Phase II trial of pentostatin in refractory lymphomas and cutaneous T-cell disease. J Clin Oncol 9:565–571PubMed
299.
Tsimberidou AM, Giles F, Duvic M et al (2004) Phase II study of pentostatin in advanced T-cell lymphoid malignancies: update of an M.D. Anderson Cancer Center series. Cancer 100:342–349PubMedCrossRef
300.
Calderon Cabrera C, de la Cruz Vicente F, Marin-Niebla A et al (2013) Pentostatin plus cyclophosphamide and bexarotene is an effective and safe combination in patients with mycosis fungoides/Sezary syndrome. Br J Haematol 162:130–132PubMedCrossRef
301.
Foss F, Horwitz SM, Coiffier B et al (2012) Pralatrexate is an effective treatment for relapsed or refractory transformed mycosis fungoides: a subgroup efficacy analysis from the PROPEL study. Clin Lymphoma Myeloma Leuk 12:238–243PubMedCrossRef
302.
Horwitz SM, Kim YH, Foss F et al (2012) Identification of an active, well-tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood 119:4115–4122PubMedCrossRef
303.
Schlaak M, Pickenhain J, Theurich S et al (2013) Allogeneic stem cell transplantation versus conventional therapy for advanced primary cutaneous T-cell lymphoma. Cochrane Database Syst Rev 8:CD008908
304.
Duarte RF, Boumendil A, Onida F et al (2014) Long-term outcome of allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sezary syndrome: a European society for blood and marrow transplantation lymphoma working party extended analysis. J Clin Oncol 32:3347–3348PubMedCrossRef
305.
Hosing C, Bassett R, Dabaja B et al (2015) Allogeneic stem-cell transplantation in patients with cutaneous lymphoma: updated results from a single institution. Ann Oncol 26:2490–2495PubMedPubMedCentral
306.
Lundin J, Hagberg H, Repp R et al (2003) Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood 101:4267–4272PubMedCrossRef
307.
Bernengo MG, Quaglino P, Comessatti A et al (2007) Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients. Haematologica 92:784–794PubMedCrossRef
308.
de Masson A, Guitera P, Brice P et al (2014) Long-term efficacy and safety of alemtuzumab in advanced primary cutaneous T-cell lymphomas. Br J Dermatol 170:720–724PubMedCrossRef
309.
Kim YH, Tavallaee M, Sundram U et al (2015) Phase II investigator-initiated study of brentuximab vedotin in mycosis fungoides and Sezary syndrome with variable CD30 expression level: a multi-institution collaborative project. J Clin Oncol 33:3750–3758PubMedPubMedCentralCrossRef
310.
Duvic M, Tetzlaff MT, Gangar P et al (2015) Results of a phase II trial of brentuximab vedotin for CD30+ cutaneous T-cell lymphoma and lymphomatoid papulosis. J Clin Oncol 33:3759–3765PubMedPubMedCentralCrossRef
311.
Olsen E, Duvic M, Frankel A et al (2001) Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 19:376–388PubMed
312.
Prince HM, Duvic M, Martin A et al (2010) Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J Clin Oncol 28:1870–1877PubMedCrossRef
313.
Wilcox RA (2015) Mogamulizumab: 2 birds, 1 stone. Blood 125:1847–1848PubMedCrossRef
314.
Duvic M, Pinter-Brown LC, Foss FM et al (2015) Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood 125:1883–1889PubMedPubMedCentralCrossRef
315.
Tanday S (2015) Mogamulizumab benefits seen in cutaneous T-cell lymphoma. Lancet Oncol 16:e200PubMedCrossRef
316.
Ni X, Jorgensen JL, Goswami M et al (2015) Reduction of regulatory T cells by Mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sezary syndrome. Clin Cancer Res 21:274–285PubMedCrossRef