Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-16 mediates the regulation of a senescence–apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas

Abstract

Multiple sequential genetic and epigenetic alterations underlie cancer development and progression. Overcoming cellular senescence is an early step in cancer pathogenesis. Here, we demonstrate that a noncoding regulatory RNA, microRNA-16 (miR-16), has the potential to induce cellular senescence. First, we examined the expression of miR-16 in primary cutaneous T-cell lymphoma (CTCL) and other non-Hodgkin T/natural killer (NK)-cell lymphomas and found that miR-16 was downregulated than that in the corresponding normal cells. Notably, miR-16 expression was reduced as the primary CTCL progressed from the early stage to the advanced stage. Next, we transduced CTCL cells with miR-16 to examine whether this miRNA exhibited tumor-suppressive effects in CTCL cells. In CTCL cells expressing wild-type p53, forced expression of miR-16 enhanced p21 expression via downregulation of the polycomb group protein Bmi1, thereby inducing cellular senescence. Alternatively, in CTCL cells lacking functional p53, miR-16 induced compensatory apoptosis. The miR-16 transfection significantly decreased senescent cells and increased apoptotic cells in p21-knockdown CTCL cells expressing wild-type p53, suggesting that the presence or absence of p21 may be the most important condition in the senescence–apoptosis switch in CTCL lymphomagenesis. Furthermore, we found that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) restored the expression of miR-16 and its essential targets, induced senescence in CTCL cells expressing wild-type p53 and promoted apoptosis in cells with nonfunctional p53. Moreover, we found that other T/NK-cell lymphoma cell lines showed similar tumor-suppressive effects in response to miR-16 and SAHA and that these effects were dependent on p53 status. These results suggested that epigenetic silencing of miR-16 may be a key step during lymphoma development. Elucidation of the essential targets of miR-16 and SAHA provides a basis for the clinical application of SAHA in the treatment of CTCL and other non-Hodgkin T/NK-cell lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weinberg RA . The Biology of Cancer. Garland Science, Taylor & Francis Group, LLC, 2007.

    Google Scholar 

  2. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  Google Scholar 

  3. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  Google Scholar 

  4. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–315.

    Article  CAS  Google Scholar 

  5. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2000; 436: 660–665.

    Article  Google Scholar 

  6. Courtois-Cox S, Jones SL, Cichowski K . Many roads lead to oncogene-induced senescence. Oncogene 2008; 27: 2801–2809.

    Article  CAS  Google Scholar 

  7. Jaffe ES, Harris NL, Stein H, Campo E, Pileri SA, Swerdlow SH . Mature T- and NK-cell neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al (eds). World Health Organization Classification of Tumors of Haematopoietic and Lymphoid Tissues. IARC press: Lyon, France, 2008, pp 269–319.

    Google Scholar 

  8. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768–3785.

    Article  CAS  Google Scholar 

  9. Ralfkiaer E, Cerroni L, Sander CA, Smoller BR, Willemze R et al. Mycosis fungoides. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H (eds) World Health Organization Classification of Tumors of Haematopoietic and Lymphoid Tissues. IARC press: Lyon, France, 2008, pp 296–298.

    Google Scholar 

  10. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  11. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  Google Scholar 

  12. Ito M, Teshima K, Ikeda S, Kitadate A, Watanabe A, Nara M et al. MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6 in advanced cutaneous T-cell lymphoma. Blood 2014; 123: 1499–1511.

    Article  CAS  Google Scholar 

  13. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  14. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 2007; 27: 2240–2252.

    Article  CAS  Google Scholar 

  15. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. The miR-15a and miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271–1277.

    Article  CAS  Google Scholar 

  16. Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 2008; 36: 5391–5404.

    Article  CAS  Google Scholar 

  17. Teshima K, Nara M, Watanabe A, Ito M, Ikeda S, Hatano Y et al. Dysregulation of BMI1 and microRNA-16 collaborate to enhance an anti-apoptotic potential in the side population of refractory mantle cell lymphoma. Oncogene 2014; 33: 2191–2203.

    Article  CAS  Google Scholar 

  18. Watanabe A, Tagawa H, Yamashita J, Teshima K, Nara M, Iwamoto K et al. The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 2011; 25: 1324–1334.

    Article  CAS  Google Scholar 

  19. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 2013; 155: 1119–1130.

    Article  CAS  Google Scholar 

  20. Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S et al. Programmed cell senescence during mammalian embryonic development. Cell 2013; 155: 1104–1118.

    Article  Google Scholar 

  21. Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N et al. Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell 2014; 55: 73–84.

    Article  CAS  Google Scholar 

  22. Krenning L, Feringa FM, Shaltiel IA, van den Berg J, Medema RH . Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol Cell 2014; 55: 59–72.

    Article  CAS  Google Scholar 

  23. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–410.

    Article  CAS  Google Scholar 

  24. Litvinov IV, Cordeiro B, Huang Y, Zargham H, Pehr K, Doré MA et al. Ectopic expression of cancer-testis antigens in cutaneous T-cell lymphoma patients. Clin Cancer Res 2014; 20: 3799–3808.

    Article  CAS  Google Scholar 

  25. Tosca A, Linardopoulos S, Malliri A, Hatziolou E, Nicolaidou A, Spandidos DA . Implication of the ras and myc oncoproteins in the pathogenesis of mycosis fungoides. Anticancer Res 1991; 11: 1433–1438.

    CAS  PubMed  Google Scholar 

  26. Zhang C, Toulev A, Kamarashev J, Qin JZ, Dummer R, Döbbeling U . Consequences of p16 tumor suppressor gene inactivation in mycosis fungoides and Sezary syndrome and role of the bmi-1 and ras oncogenes in disease progression. Hum Pathol 2007; 38: 995–1002.

    Article  CAS  Google Scholar 

  27. Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S et al. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res 2009; 69: 9090–9095.

    Article  CAS  Google Scholar 

  28. Polytarchou C, Iliopoulos D, Struhl K . An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci USA 2012; 109: 14470–14475.

    Article  CAS  Google Scholar 

  29. Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S . shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 2007; 1: 87–99.

    Article  CAS  Google Scholar 

  30. Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 2014; 26: 344–357.

    Article  CAS  Google Scholar 

  31. Zhang X, Chen X, Lin J, Lwin T, Wright G, Moscinski LC et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene 2012; 31: 3002–3008.

    Article  CAS  Google Scholar 

  32. Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG et al. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood 2012; 119: 1162–1172.

    Article  CAS  Google Scholar 

  33. Gallardo F, Esteller M, Pujol RM, Costa C, Estrach T, Servitje O . Methylation status of the p15, p16 and MGMT promoter genes in primary cutaneous T-cell lymphomas. Haematologica 2004; 89: 1401–1403.

    CAS  PubMed  Google Scholar 

  34. van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 2005; 23: 3886–3896.

    Article  CAS  Google Scholar 

  35. Laharanne E, Chevret E, Idrissi Y, Gentil C, Longy M, Ferrer J et al. CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol 2010; 23: 547–558.

    Article  CAS  Google Scholar 

  36. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007; 109: 31–39.

    Article  CAS  Google Scholar 

  37. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007; 25: 3109–3115.

    Article  CAS  Google Scholar 

  38. Richon VM, Sandhoff TW, Rifkind RA, Marks PA . Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000; 97: 10014–10019.

    Article  CAS  Google Scholar 

  39. Marks PA, Breslow R . Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotech 2007; 25: 84–90.

    Article  CAS  Google Scholar 

  40. Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005; 65: 6305–6311.

    Article  CAS  Google Scholar 

  41. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006; 103: 1888–1893.

    Article  CAS  Google Scholar 

  42. Manfé V, Biskup E, Johansen P, Maria R, Kamstrup MR, Krejsgaard TF et al. MDM2 Inhibitor Nutlin-3a induces apoptosis and senescence in cutaneous T-cell lymphoma: Role of p53. J Invest Dermatol 2012; 132: 1487–1496.

    Article  Google Scholar 

  43. Zhang C, Richon V, Ni X, Talpur R, Duvic M . Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 2005; 125: 1045–1052.

    Article  CAS  Google Scholar 

  44. Heider U, Rademacher J, Lamottke B, Mieth M, Moebs M, von Metzler I et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T cell lymphoma. Eur J Haematol 2009; 82: 440–449.

    Article  CAS  Google Scholar 

  45. Al-Yacoub N, Fecker LF, Möbs M, Plötz M, Braun FK, Sterry W et al. Apoptosis induction by SAHA in cutaneous T-cell lymphoma cells is related to downregulation of c-FLIP and enhanced TRAIL signaling. J Invest Dermatol 2012; 132: 2263–2274.

    Article  CAS  Google Scholar 

  46. Cui YX, Kerby A, McDuff FK, Ye H, Turner SD . NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood 2009; 113: 5217–5227.

    Article  CAS  Google Scholar 

  47. Jänicke RU, Sohn D, Essmann F, Schulze-Osthoff K . The multiple battles fought by anti-apoptotic p21. Cell Cycle 2007; 6: 407–413.

    Article  Google Scholar 

  48. Ling X, Chao Xu, Fan C, Zhong K, Li F, Wang X . FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX. Cancer Res 2014; 74: 7487–7497.

    Article  CAS  Google Scholar 

  49. McGregor JM, Crook T, Fraser-Andrews EA, Rozycka M, Crossland S, Brooks L et al. Spectrum of p53 gene mutations suggests a possible role for ultraviolet radiation in the pathogenesis of advanced cutaneous lymphomas. J Invest Dermatol 1999; 112: 317–321.

    Article  CAS  Google Scholar 

  50. Miyagaki T, Sugaya M, Suga H, Kamata M, Ohmatsu H, Fujita H et al. IL-22, but not IL-17, dominant environment in cutaneous T-cell lymphoma. Clin Cancer Res 2011; 17: 7529–7538.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our appreciation to Mr J Yamashita for his outstanding technical assistance. This work was supported by JSPS KAKENHI Grant Number 25461405 (Grant-in-Aid for Scientific Research (to HT)) and a Grant from the Uehara Memorial Foundation.

Author contributions

AK, SI, MI, KT, IT, NH, NT, TM and MS and HT performed experiments and analyzed data. AK and HT designed experiments, analyzed data and wrote the paper. HT designed the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Tagawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitadate, A., Ikeda, S., Teshima, K. et al. MicroRNA-16 mediates the regulation of a senescence–apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene 35, 3692–3704 (2016). https://doi.org/10.1038/onc.2015.435

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.435

This article is cited by

Search

Quick links