Skip to main content
Top

20-01-2016 | Gynecologic cancers | Article

A practical review of magnetic resonance imaging for the evaluation and management of cervical cancer

Journal: Radiation Oncology

Authors: Emma C. Fields, Elisabeth Weiss

Publisher: BioMed Central

Abstract

Cervical cancer is a leading cause of mortality in women worldwide. Staging and management of cervical cancer has for many years been based on clinical exam and basic imaging such as intravenous pyelogram and x-ray. Unfortunately, despite advances in radiotherapy and the inclusion of chemotherapy in the standard plan for locally advanced disease, local control has been unsatisfactory. This situation has changed only recently with the increasing implementation of magnetic resonance image (MRI)-guided brachytherapy. The purpose of this article is therefore to provide an overview of the benefits of MRI in the evaluation and management of cervical cancer for both external beam radiotherapy and brachytherapy and to provide a practical approach if access to MRI is limited.
Literature
1.
World Cancer Research Fund International. 2012 September 22nd, 2015]; Available from: http://​www.​wcrf.​org/​int/​cancer-facts-figures/​worldwide-data.
2.
Eifel PJ, Winter K, Morris M, Levenback C, Grigsby PW, Cooper J, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90–01. J Clin Oncol. 2004;22(5):872–80.CrossRefPubMed
3.
Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340(15):1137–43.CrossRefPubMed
4.
Rose PG, Ali S, Watkins E, Thigpen JT, Deppe G, Clarke-Pearson DL, et al. Long-term follow-up of a randomized trial comparing concurrent single agent cisplatin, cisplatin-based combination chemotherapy, or hydroxyurea during pelvic irradiation for locally advanced cervical cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007;25(19):2804–10.CrossRefPubMed
5.
Stehman FB, Ali S, Keys HM, Muderspach LI, Chafe WE, Gallup DG, et al. Radiation therapy with or without weekly cisplatin for bulky stage 1B cervical carcinoma: follow-up of a Gynecologic Oncology Group trial. Am J Obstet Gynecol. 2007;197(5):503 e1-6.CrossRefPubMed
6.
Lanciano R, Calkins A, Bundy BN, Parham G, Lucci JA, 3rd, Moore DH, et al. Randomized comparison of weekly cisplatin or protracted venous infusion of fluorouracil in combination with pelvic radiation in advanced cervix cancer: a gynecologic oncology group study. J Clin Oncol. 2005;23(33):8289–95.CrossRefPubMed
7.
Tanderup K, Nielsen SK, Nyvang GB, Pedersen EM, Rohl L, Aagaard T, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94(2):173–80.CrossRefPubMed
8.
Balleyguier C, Sala E, Da Cunha T, Bergman A, Brkljacic B, Danza F, et al. Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. European radiology. 2011;21(5):1102–10.CrossRefPubMed
9.
Paulson ES, Erickson B, Schultz C, Li AX. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys. 2015;42(1):28–39.CrossRefPubMed
10.
Hricak H, Swift PS, Campos Z, Quivey JM, Gildengorin V, Goranson H. Irradiation of the cervix uteri: value of unenhanced and contrast-enhanced MR imaging. Radiology. 1993;189(2):381–8.CrossRefPubMed
11.
Hricak H, Gatsonis C, Coakley FV, Snyder B, Reinhold C, Schwartz LH, et al. Early invasive cervical cancer: CT and MR imaging in preoperative evaluation - ACRIN/GOG comparative study of diagnostic performance and interobserver variability. Radiology. 2007;245(2):491–8.CrossRefPubMed
12.
Mitchell DG, Snyder B, Coakley F, Reinhold C, Thomas G, Amendola M, et al. Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol. 2006;24(36):5687–94.CrossRefPubMed
13.
Potter R, Georg P, Dimopoulos JC, Grimm M, Berger D, Nesvacil N, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–23.PubMedCentralCrossRefPubMed
14.
Lindegaard JC, Fokdal LU, Nielsen SK, Juul-Christensen J, Tanderup K. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol. 2013;52(7):1510–19.CrossRefPubMed
15.
Rijkmans EC, Nout RA, Rutten IH, Ketelaars M, Neelis KJ, Laman MS, et al. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol Oncol. 2014;135(2):231–8.CrossRefPubMed
16.
Hatano K, Sekiya Y, Araki H, Sakai M, Togawa T, Narita Y, et al. Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 1999;45(3):639–44.CrossRefPubMed
17.
Vandecasteele K, Delrue L, Lambert B, Makar A, Lambein K, Denys H, et al. Value of magnetic resonance and (1)(8)FDG PET-CT in predicting tumor response and resectability of primary locally advanced cervical cancer after treatment with intensity-modulated arc therapy: a prospective pathology-matched study. Int J Gynecol Cancer. 2012;22(4):630–37.CrossRefPubMed
18.
Harry VN, Semple SI, Gilbert FJ, Parkin DE. Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecologic oncology. 2008;111(2):213–20.CrossRefPubMed
19.
Zhang Y, Chen JY, Xie CM, Mo YX, Liu XW, Liu Y, et al. Diffusion weighted magnetic resonance imaging for prediction of response of advanced cervical cancer to chemo radiation. J Comp Asst Tomography. 2011;35(1):102–7.CrossRef
20.
Somoye G, Harry V, Semple S, Plataniotis G, Scott N, Gilbert FJ, et al. Early diffusion weighted magnetic resonance imaging can predict survival in women with locally advanced cancer of the cervix treated with combined chemo-radiation. European radiology. 2012;22(11):2319–27.CrossRefPubMed
21.
Mayr NA, Yuh WT, Jajoura D, Wang JZ, Lo SS, Montebello JF, et al. Ultra-early predictive assay for treatment failure using functional magnetic resonance imaging and clinical prognostic parameters in cervical cancer. Cancer. 2010;116(4):903–12.PubMedCentralCrossRefPubMed
22.
Sironi S, Villa G, Rossi S, Bocciolone L, Maggioni A, Sonzogni A, et al. Magnetic resonance imaging in the evaluation of parametrial invasion of carcinoma of the cervix uteri: optimization of the study protocol. La Radiologia medica. 2001;101(6):477–84.PubMed
23.
Sironi S, Bellomi M, Villa G, Rossi S, Del Maschio A. Clinical stage I carcinoma of the uterine cervix value of preoperative magnetic resonance imaging in assessing parametrial invasion. Tumori. 2002;88(4):291–5.PubMed
24.
Iwata S, Joja I, Okuno K, Miyagi Y, Sakaguchi Y, Kudo T, et al. Cervical carcinoma with full-thickness stromal invasion: efficacy of dynamic MR imaging in the assessment of parametrial involvement. Radiation medicine. 2002;20(5):247–55.PubMed
25.
Rizzo S, Calareso G, Maccagnoni S, Angileri SA, Landoni F, Raimondi S, et al. Pre-operative MR evaluation of features that indicate the need of adjuvant therapies in early stage cervical cancer patients. A single-centre experience. Euro J of Radiology. 2014;83(5):858–64.CrossRef
26.
Rockall AG, Ghosh S, Alexander-Sefre F, Babar S, Younis MT, Naz S, et al. Can MRI rule out bladder and rectal invasion in cervical cancer to help select patients for limited EUA? Gynecologic oncology. 2006;101(2):244–9.CrossRefPubMed
27.
Kim WY, Chang SJ, Chang KH, Yoo SC, Lee EJ, Ryu HS. Reliability of magnetic resonance imaging for bladder or rectum invasion in cervical cancer. The Journal of reproductive medicine. 2011;56(11-12):485–90.PubMed
28.
Justino PB, Baroni R, Blasbalg R, Carvalho Hde A. Clinical tumor dimensions may be useful to prevent geographic miss in conventional radiotherapy of uterine cervix cancer-a magnetic resonance imaging-based study. International journal of radiation oncology, biology, physics. 2009;74(2):503–10.CrossRefPubMed
29.
Russell AH, Walter JP, Anderson MW, Zukowski CL. Sagittal magnetic resonance imaging in the design of lateral radiation treatment portals for patients with locally advanced squamous cancer of the cervix. International journal of radiation oncology, biology, physics. 1992;23(2):449–55.CrossRefPubMed
30.
Zunino S, Rosato O, Lucino S, Jauregui E, Rossi L, Venencia D. Anatomic study of the pelvis in carcinoma of the uterine cervix as related to the box technique. International journal of radiation oncology, biology, physics. 1999;44(1):53–9.CrossRefPubMed
31.
Weiss E, Eberlein K, Pradier O, Schmidberger H, Hess CF. The impact of patient positioning on the adequate coverage of the uterus in the primary irradiation of cervical carcinoma: a prospective analysis using magnetic resonance imaging. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology. 2002;63(1):83–7.CrossRef
32.
Lim K, Small W, Jr., Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity modulated pelvic radiotherapy for the definitive treatment of cervix cancer. International journal of radiation oncology, biology, physics. 2011;79(2): 348–55.CrossRefPubMed
33.
Toita T, Ohno T, Kaneyasu Y, Kato T, Uno T, Hatano K, et al. A consensus-based guideline defining clinical target volume for primary disease in external beam radiotherapy for intact uterine cervical cancer. Japanese journal of clinical oncology. 2011;41(9):1119–26.CrossRefPubMed
34.
Thomas L, Chacon B, Kind M, Lasbareilles O, Muyldermans P, Chemin A, et al. Magnetic resonance imaging in the treatment planning of radiation therapy in carcinoma of the cervix treated with the four-field pelvic technique. International journal of radiation oncology, biology, physics. 1997;37(4):827–32.CrossRefPubMed
35.
Taylor A, Powell ME. An assessment of interfractional uterine and cervical motion: implications for radiotherapy target volume definition in gynaecological cancer. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology. 2008;88(2):250–7.CrossRef
36.
Kerkhof EM, van der Put RW, Raaymakers BW, van der Heide UA, Jurgenliemk-Schulz IM, Lagendijk JJ. Intrafraction motion in patients with cervical cancer: The benefit of soft tissue registration using MRI. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology. 2009;93(1):115–21.CrossRef
37.
Gordon JJ, Weiss E, Abayomi OK, Siebers JV, Dogan N. The effect of uterine motion and uterine margins on target and normal tissue doses in intensity modulated radiation therapy of cervical cancer. Physics in medicine and biology. 2011;56(10):2887–901.PubMedCentralCrossRefPubMed
38.
Chan P, Dinniwell R, Haider MA, Cho YB, Jaffray D, Lockwood G, et al. Inter- and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: a cinematic-MRI point-of-interest study. International journal of radiation oncology, biology, physics. 2008;70(5):1507–15.CrossRefPubMed
39.
Haack S, Nielsen SK, Lindegaard JC, Gelineck J, Tanderup K. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2009;91(2):87–93.CrossRef
40.
Mahantshetty U, Swamidas J, Khanna N, Engineer R, Merchant NH, Shrivastava S. Magnetic resonance image-based dose volume parameters and clinical outcome with high dose rate brachytherapy in cervical cancers-a validation of GYN GECESTRO brachytherapy recommendations. Clinical oncology. 2011;23(5):376–7.CrossRefPubMed
41.
Haie-Meder C, Potter R, Van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74(3):235–45.CrossRefPubMed
42.
Potter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67–77.CrossRefPubMed
43.
Nag S, Gupta N. A simple method of obtaining equivalent doses for use in HDR brachytherapy. Int J Radiat Oncol Biol Phys. 2000;46(2):507–13.CrossRefPubMed
44.
Dimopoulos JC, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22.PubMedCentralCrossRefPubMed
45.
Hellebust TP, Kirisits C, Berger D, Perez-Calatayud J, De Brabandere M, De Leeuw A, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96(2):153–60.CrossRefPubMed
46.
Gill BS, Kim H, Houser CJ, Kelley JL, Sukumvanich P, Edwards RP, et al. MRI-guided high-dose-rate intracavitary brachytherapy for treatment of cervical cancer: the University of Pittsburgh experience. Int J Radiat Oncol Biol Phys. 2015;91(3):540–7.CrossRefPubMed
47.
Simpson DR, Scanderbeg DJ, Carmona R, McMurtrie RM, Einck J, Mell LK, et al. Clinical Outcomes of Computed Tomography-Based Volumetric Brachytherapy Planning for Cervical Cancer. Int J Radiat Oncol Biol Phys. 2015;93(1):150–7.CrossRefPubMed
48.
Nomden CN, de Leeuw AA, Roesink JM, Tersteeg RJ, Moerland MA, Witteveen PO, et al. Clinical outcome and dosimetric parameters of chemo-radiation including MRI guided adaptive brachytherapy with tandem-ovoid applicators for cervical cancer patients: a single institution experience. Radiother Oncol. 2013;107(1):69–74.CrossRefPubMed
49.
Yoshida K, Jastaniyah N, Sturdza A, Lindegaard J, Segedin B, Mahantshetty U, et al. Assessment of Parametrial Response by Growth Pattern in Patients With International Federation of Gynecology and Obstetrics Stage IIB and IIIB Cervical Cancer: Analysis of Patients From a Prospective, Multicenter Trial (EMBRACE). Int J Radiat Oncol Biol Phys. 2015;93(4):788–96.CrossRefPubMed
50.
Takenaka T, Yoshida K, Tachiiri S, Yamazaki H, Aramoto K, Furuya S, et al. Comparison of dose-volume analysis between standard Manchester plan and magnetic resonance image-based plan of intracavitary brachytherapy for uterine cervical cancer. J Radiat Res. 2012;53(5):791–7.PubMedCentralCrossRefPubMed
51.
Kim H, Kim JW, Hong SJ, Rha KH, Lee CG, Yang SC, et al. Treatment outcome of localized prostate cancer by 70 Gy hypofractionated intensity-modulated radiotherapy with a customized rectal balloon. Radiat Oncol J. 2014;32(3):187–97.PubMedCentralCrossRefPubMed
52.
Zwahlen D, Jezioranski J, Chan P, Haider MA, Cho YB, Yeung I, et al. Magnetic resonance imaging-guided intracavitary brachytherapy for cancer of the cervix. Int J Radiat Oncol Biol Phys. 2009;74(4):1157–64.CrossRefPubMed
53.
Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Potter R. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68(2):491–8.CrossRefPubMed
54.
Hegazy N, Potter R, Kirisits C, Berger D, Federico M, Sturdza A, et al. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination. Acta Oncol. 2013;52(7):1345–52.CrossRefPubMed
55.
Vincens E, Balleyguier C, Rey A, Uzan C, Zareski E, Gouy S, et al. Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy: correlation of radiologic findings with surgicopathologic results. Cancer. 2008;113(8):2158–65.CrossRefPubMed
56.
Viswanathan AN, Szymonifka J, Tempany-Afdhal CM, O'Farrell DA, Cormack RA. A prospective trial of real-time magnetic resonance-guided catheter placement in interstitial gynecologic brachytherapy. Brachytherapy. 2013;12(3):240–7.CrossRefPubMed
57.
Lang S, Nesvacil N, Kirisits C, Georg P, Dimopoulos JC, Federico M, et al. Uncertainty analysis for 3D image-based cervix cancer brachytherapy by repetitive MR imaging: assessment of DVH-variations between two HDR fractions within one applicator insertion and their clinical relevance. Radiother Oncol. 2013;107(1):26–31.CrossRefPubMed
58.
Trifiletti DM, Libby B, Feuerlein S, Kim T, Garda A, Watkins WT, et al. Implementing MRI-based target delineation for cervical cancer treatment within a rapid workflow environment for image-guided brachytherapy: A practical approach for centers without in-room MRI. Brachytherapy. 2015;14(6):905–9.CrossRefPubMed
59.
Nesvacil N, Potter R, Sturdza A, Hegazy A, Federico M, Kirisits C. Adaptive image guided brachytherapy for cervical cancer: a combined MRI-/CT-planning technique with MRI only at first fraction. Radiother Oncol. 2013;107(1):75–81.PubMedCentralCrossRefPubMed
60.
Beriwal S, Kim H, Coon D, Mogus R, Heron DE, Li X, et al. Single magnetic resonance imaging vs magnetic resonance imaging/computed tomography planning in cervical cancer brachytherapy. Clin Oncol. 2009;21(6):483–7.CrossRef
61.
Kirisits C, Rivard MJ, Baltas D, Ballester F, De Brabandere M, van der Laarse R, et al. Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM. Radiother Oncol. 2014;110(1):199–212.PubMedCentralCrossRefPubMed
62.
Viswanathan AN, Beriwal S, De Los Santos JF, Demanes DJ, Gaffney D, Hansen J, et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: high-dose-rate brachytherapy. Brachytherapy. 2012;11(1):47–52.PubMedCentralCrossRefPubMed
63.
Viswanathan AN, Erickson B, Gaffney DK, Beriwal S, Bhatia SK, Lee Burnett O, 3rd, et al. Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2014;90(2):320–8.PubMedCentralCrossRefPubMed
64.
Viswanathan AN, Thomadsen B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy. 2012;11(1):33–46.CrossRefPubMed
65.
Jadon R, Pembroke CA, Hanna CL, Palaniappan N, Evans M, Cleves AE, et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol. 2014;26(4):185–96.CrossRef
66.
Dimopoulos JC, Schirl G, Baldinger A, Helbich TH, Potter R. MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol. 2009;185(5):282–7.CrossRefPubMed
67.
Dimopoulos JC, Schard G, Berger D, Lang S, Goldner G, Helbich T, et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk. Int J Radiat Oncol Biol Phys. 2006;64(5):1380–8.CrossRefPubMed
68.
Schmid MP, Fidarova E, Potter R, Petric P, Bauer V, Woehs V, et al. Magnetic resonance imaging for assessment of parametrial tumour spread and regression patterns in adaptive cervix cancer radiotherapy. Acta Oncol. 2013;52(7):1384–90.CrossRefPubMed
69.
Schmid MP, Mansmann B, Federico M, Dimopoulous JC, Georg P, Fidarova E, et al. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients. A low-field MRI study. Strahlenther Onkol. 2013;189(3):238–44.CrossRefPubMed
70.
Ariga T, Toita T, Kasuya G, Nagai Y, Inamine M, Kudaka W, et al. External beam boost irradiation for clinically positive pelvic nodes in patients with uterine cervical cancer. J Radiat Res. 2013;54(4):690–6.PubMedCentralCrossRefPubMed
71.
Assenholt MS, Vestergaard A, Kallehauge JF, Mohamed S, Nielsen SK, Petersen JB, et al. Proof of principle: Applicator-guided stereotactic IMRT boost in combination with 3D MRI-based brachytherapy in locally advanced cervical cancer. Brachytherapy. 2014;13(4):361–8.CrossRefPubMed
72.
Clivio A, Kluge A, Cozzi L, Kohler C, Neumann O, Vanetti E, et al. Intensity modulated proton beam radiation for brachytherapy in patients with cervical carcinoma. Int J Radiat Oncol Biol Phys. 2013;87(5):897–903.CrossRefPubMed
73.
Padhani AR, Koh DM. Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am. 2011;19(1):181–209.CrossRefPubMed
74.
Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.PubMedCentralCrossRefPubMed
75.
McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. Eur Radiol. 2008;18(5):1058–64.CrossRefPubMed
76.
Liu Y, Bai R, Sun H, Liu H, Zhao X, Li Y. Diffusion-weighted imaging in predicting and monitoring the response of uterine cervical cancer to combined chemoradiation. Clin Radiol. 2009;64(11):1067–74.CrossRefPubMed
77.
Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35.CrossRefPubMed
78.
Nakamura K, Joja I, Fukushima C, Haruma T, Hayashi C, Kusumoto T, et al. The preoperative SUVmax is superior to ADCmin of the primary tumour as a predictor of disease recurrence and survival in patients with endometrial cancer. Eur J Nucl Med Mol Imaging. 2013;40(1):52–60.CrossRefPubMed
79.
Ho KC, Lin G, Wang JJ, Lai CH, Chang CJ, TC Yen. Correlation of apparent diffusion coefficients measured by 3 T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur J Nucl Med Mol Imaging. 2009;36(2):200–8.CrossRefPubMed
80.
Barwick TD, Taylor A, Rockall A. Functional imaging to predict tumor response in locally advanced cervical cancer. Curr Oncol Rep. 2013;15(6):549–58.CrossRefPubMed
81.
Mayr NA, Huang Z, Wang JZ, Lo SS, Fan JM, Grecula JC, et al. Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys. 2012;83(3):972–9.PubMedCentralCrossRefPubMed
82.
Huang Z, Yuh KA, Lo SS, Grecula JC, Sammet S, Sammet CL, et al. Validation of optimal DCE-MRI perfusion threshold to classify at-risk tumor imaging voxels in heterogeneous cervical cancer for outcome prediction. Magn Reson Imaging. 2014;32(10):1198–205.PubMedCentralCrossRefPubMed
83.
Kim CK, Park SY, Park BK, Park W, Huh SJ. Blood oxygenation level-dependent MR imaging as a predictor of therapeutic response to concurrent chemoradiotherapy in cervical cancer: a preliminary experience. Eur Radiol. 2014;24(7):1514–20.CrossRefPubMed
84.
Zietkowski D, deSouza NM, Davidson RL, Payne GS. Characterisation of mobile lipid resonances in tissue biopsies from patients with cervical cancer and correlation with cytoplasmic lipid droplets. NMR Biomed. 2013;26(9):1096–102.CrossRefPubMed