Skip to main content

Advertisement

Log in

MRI Assessment of Cervical Cancer for Adaptive Radiotherapy

MR-tomographische Beurteilung des Zervixkarzinoms für die adaptive Radiotherapie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Purpose:

To assess the importance of the information obtained from MRI for adaptive cervix cancer radiotherapy.

Patients and Methods:

49 patients with cervix cancer, treated by external-beam radiotherapy (EBRT) and MRI-assisted high-dose-rate brachytherapy ± concomitant cisplatin, underwent MRI at diagnosis and at the time of brachytherapy fractions. 190 MRI examinations were performed. Pretreatment scans were correlated with clinical examination (CE) findings. Measurements in 3-D of the tumor extension and also of the distance from the tumor to the pelvic side wall were performed using both MRI and CE. The tumor volume regression induced initially by EBRT and the subsequent regression after each brachytherapy fraction were assessed.

Results:

MRI and CE showed 92% agreement in overall parametrial staging and 73% agreement in terms of vaginal involvement. There was, however, disagreement in parametrial side (right/left) classification in 25% of the parametria examined. These were patients with unilateral displacement of the cervix and contralateral invasion of the parametrium. The mean tumor volume on the pretreatment MRI scan (GTVD) was 61 cm3. At the time of the four brachytherapy fractions the mean was 16 cm3, 10 cm3, 9 cm3, and 8 cm3, defined as the GTVBT plus the gray zones in the parametria.

Conclusion:

CE and MRI findings agree well in terms of overall staging. The clinical assessment of side-specific parametrial invasion improved when having access to the additional knowledge obtained from MRI. The greatest decrease in tumor volume occurs during EBRT, whereas tumor regression between the first and subsequent brachytherapy fractions is minor.

Ziel:

Ermittlung der Bedeutung der MRT für die adaptive Radiotherapie des Zervixkarzinoms.

Patienten und Methodik:

49 Patientinnen mit Zervixkarzinom, behandelt mittels Teletherapie und MRT-gestützter High-Dose-Rate-Brachytherapie ± konkomitante Cisplatingabe, erhielten eine MRT zum Zeitpunkt der Diagnose und zum Zeitpunkt der Brachytherapiefraktionen. Insgesamt wurden 190 MRT-Untersuchungen durchgeführt. Der Befund der diagnostischen MRT wurde dem der klinischen Untersuchung gegenübergestellt. Es erfolgten Messungen der Tumorausdehnung in 3-D und der Entfernung zwischen Tumor und Beckenwand. Zusätzlich wurden die primär durch die Teletherapie und anschließend die durch jede Fraktion der Brachytherapie verursachte Regression des Tumorvolumens ermittelt.

Ergebnisse:

Die Übereinstimmung zwischen MRT und klinischer Untersuchung für die Ermittlung des parametranen Tumorstadiums betrug 92% (Tabelle 1) und bezüglich der vaginalen Beteiligung 73% (Tabelle 3). Die seitengetrennte Beurteilung der Parametrien (links/rechts) zeigte jedoch inkongruente Ergebnisse in 25% der untersuchten Parametrien (Tabelle 1). Dabei handelte es sich um Patientinnen mit unilateraler Lageveränderung der Zervix und kontralateraler parametraner Infiltration (Abbildung 1). Das mittlere Tumorvolumen bei den diagnostischen MRT-Untersuchungen (GTVD) betrug 61 cm3 (Abbildung 2). Die Bestimmung der Tumorvolumina der vier einzelnen Fraktionen der Brachytherapie (GTVBT plus graue Zonen in den Parametrien) ergab einen Mittelwert von jeweils 16 cm3, 10 cm3, 9 cm3 und 8 cm3 (Abbildung 2).

Schlussfolgerung:

Die klinische Untersuchung und die MRT zeigen eine gute Übereinstimmung bezüglich der Beurteilung des Gesamttumorstadiums. Die Objektivität der Ergebnisse der seitengetrennten klinischen Untersuchung der Parametrien wird durch die Hinzuziehung der MRT deutlich verbessert. Der Hauptteil der Tumorregression erfolgt während der Teletherapie, wobei die Tumorregression zwischen den einzelnen Fraktionen der Brachytherapie als gering einzuschätzen ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beadle B, Jhingran A, Salehpour M, et al. Tumor regression and organ motion during the course of chemoradiation for cervical cancer: implications for treatment planning and use of IMRT. Int J Radiat Oncol Biol Phys 2006;66:Suppl 3:S44.

    Google Scholar 

  2. Boss E, Barentsz J, Massugen L, et al. The role of MR imaging in invasive cervical carcinoma. Eur Radiol 2000;10:256–70.

    Article  PubMed  CAS  Google Scholar 

  3. Brixey CJ, Roeske JC, Lujan AE, et al. Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2002;54:1388–96.

    PubMed  Google Scholar 

  4. Budrukkar AN, Shrivastava SK, Jalali R, et al. Transperineal low-dose rate iridium-192 interstitial brachytherapy in cervical carcinoma stage IIB. Strahlenther Onkol 2001;177:517–24.

    Article  PubMed  CAS  Google Scholar 

  5. De Brabandere M, Mousa AG, Nulens A, et al. Potential of dose optimisation in MRI-based PDR brachytherapy of cervix carcinoma. Radiother Oncol 2008;88: 217–26.

    Article  PubMed  Google Scholar 

  6. Dellas K, Bache M, Pigorsch SU, et al. Prognostic impact of HIF-1α expression in patients with definitive radiotherapy for cervical cancer. Strahlenther Onkol 2008;184:169–74.

    Article  PubMed  Google Scholar 

  7. Dimopoulos J, Lang S, Kirisits C, et al. Dose-volume histogram parameters and local tumor control in magnetic resonance image-guided cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys 2009; doi:10.1016/j.ijrobp.2008.10.033

  8. Dimopoulos J, Kirisits C, Petric P, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys 2006;66:83–90.

    PubMed  Google Scholar 

  9. Dimopoulos J, Schard G, Berger D, et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomical structures, and organs at risk. Int J Radiat Oncol Biol Phys 2006;64:1380–8.

    PubMed  Google Scholar 

  10. Dobler B, Lorenz F, Wertz H, et al. Intensity-modulated radiation therapy (IMRT) with different combinations of treatment-planning systems and linacs. Issues and how to detect them. Strahlenther Onkol 2006;182:481–8.

    Article  PubMed  Google Scholar 

  11. Dunst J, Haensgen G. Simultaneous radiochemotherapy in cervical cancer: recommendations for chemotherapy. Strahlenther Onkol 2001;177:635–40.

    Article  PubMed  CAS  Google Scholar 

  12. Eifel PJ, Winter K, Morris M, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of Radiation Therapy Oncology Group trial (RTOG) 90-01. J Clin Oncol 2004;22:872–80.

    Article  PubMed  Google Scholar 

  13. Flueckiger F, Ebner F, Poschauko H, et al. Value of magnetic resonance tomography after primary irradiation of carcinoma of the cervix: evaluation of therapeutic success and follow-up. Strahlenther Onkol 1991;167:152–7.

    Google Scholar 

  14. Flueckiger F, Ebner F, Poschauko H, et al. Cervical cancer: serial MR imaging before and after primary radiation therapy — a 2-year follow-up study. Radiology 1992;184:89–93.

    PubMed  CAS  Google Scholar 

  15. Georg D, Kirisits C, Hillbrand M, et al. Preliminary results of a comparison between high-tech external beam and high-tech brachytherapy for cervix carcinoma. Strahlenther Onkol 2007;183:Special Issue 2:19–20.

    Article  PubMed  Google Scholar 

  16. Georg D, Kroupa B, Georg P, et al. Inverse planning — a comparative inter-system and interpatient constraint study. Strahlenther Onkol 2006;182:473–80.

    Article  PubMed  Google Scholar 

  17. Green JA, Kirwan JM, Tierney JF, et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet 2001;358:781–6.

    Article  PubMed  CAS  Google Scholar 

  18. Guckenberger M, Meyer J, Wilbert J, et al. Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice. Strahlenther Onkol 2007;183:307–13.

    Article  PubMed  Google Scholar 

  19. Heie-Meder C, Pötter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC ESTRO Working Group (I): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 2005;74: 235–45.

    Article  Google Scholar 

  20. Hricak H. Cancer of the uterus: the value of MRI pre- and post-irradiation. Int J Radiat Oncol Biol Phys 1991;21:1089–94.

    PubMed  CAS  Google Scholar 

  21. Hricak H, Lacey C, Sandles L, et al. Invasive cervical carcinoma: comparison of MR imaging and surgical findings. Radiology 1988;166:623–31.

    PubMed  CAS  Google Scholar 

  22. Kirisits C, Lang S, Dimopoulos J, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys 2006;65:624–30.

    PubMed  Google Scholar 

  23. Kirisits C, Lang S, Dimopoulos J, et al. Uncertainties when using only one MRI-based treatment plan for subsequent high-dose-rate tandem and ring applications in brachytherapy of cervix cancer. Radiother Oncol 2006;81:269–75.

    Article  PubMed  Google Scholar 

  24. Kirisits C, Pötter R, Lang S, et al. Dose and volume parameters for MRI based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 2005;62:901–11.

    PubMed  Google Scholar 

  25. Lee CM, Shrieve DC, Gaffney DK. Rapid involution and mobility of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2004;58:625–30.

    Article  PubMed  Google Scholar 

  26. Lim K, Fyles A, Lundin A, et al. Dose impact of inter-fraction motion on whole pelvis IMRT in cervix cancer. Eur J Cancer 2007;5:Suppl 5: S319.

    Google Scholar 

  27. Lindegaard JC, Tanderup K, Nielsen SK, et al. MRI-guided 3D optimization significantly improves DVH parameters of pulsed-dose-rate brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 2008;71:756–64.

    PubMed  Google Scholar 

  28. Marnitz S, Köhler C, Roth C, et al. Stage-adjusted chemoradiation in cervical cancer after transperitoneal laparoscopic staging. Strahlenther Onkol 2007;183:473–8.

    Article  PubMed  Google Scholar 

  29. Mayr NA, Taoka T, Yuh WT, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2002;52:14–22.

    PubMed  Google Scholar 

  30. Mayr NA, Yuh WT, Zheng J, et al. Tumor size evaluated by CE compared with 3D quantitative analysis in the prediction of outcome for cervical cancer. Int J Radiat Oncol Biol Phys 1997;39:395–404.

    PubMed  CAS  Google Scholar 

  31. Nag S, Cardenes H, Chang S, et al., Image-Guided Brachytherapy Working Group. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. Int J Radiat Oncol Biol Phys 2004;60:1160–72.

    PubMed  Google Scholar 

  32. Narayan K, McKenzie A, Fisher R. Estimation of tumor volume in cervical cancer by magnetic resonance imaging. Am J Clin Oncol 2003;26:163–8.

    Article  Google Scholar 

  33. Pech M, Mohnike K, Wieners G, et al. Radiotherapy of liver metastases. Comparison of target volumes and dose-volume histograms employing CT- or MRI-based treatment planning. Strahlenther Onkol 2008;184:256–61.

    Article  PubMed  Google Scholar 

  34. Polat B, Guenther I, Wilbert J, et al. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 2008;184:668–73.

    Article  PubMed  Google Scholar 

  35. Portelance L, Chao KS, Grigsby PW, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 2001;51:261–6.

    PubMed  CAS  Google Scholar 

  36. Postema S, Pattynama PM, van den Berg-Huysmans A, et al. Effect of MRI on therapeutic decisions in invasive cervical carcinoma. Direct comparison with the CE as a preperative test. Gynecol Oncol 2000;79:485–9.

    Article  PubMed  CAS  Google Scholar 

  37. Pötter R, Dimopoulos J, Bachtiary B, et al. 3D conformal HDR-brachy- and external beam therapy plus simultaneous cisplatin for high-risk cervical cancer: clinical experience with 3 year follow-up. Radiother Oncol 2006;79:80–6.

    Article  PubMed  Google Scholar 

  38. Pötter R, Dimopoulos J, Georg P, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 2007;83:148–55.

    Article  PubMed  Google Scholar 

  39. Pötter R, Heie-Meder C, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC ESTRO Working Group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy — 3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 2006;78:67–77.

    Article  PubMed  Google Scholar 

  40. Sanguineti G, Cavey ML, Endres EJ, et al. Is IMRT needed to spare the rectum when pelvic lymph nodes are part of the initial treatment volume for prostate cancer? Strahlenther Onkol 2006;182:543–9.

    Article  PubMed  Google Scholar 

  41. Strauss HG, Kuhnt T, Laban C, et al. Chemoradiation in cervical cancer with cisplatin and high-dose-rate brachytherapy combined with external beam radiotherapy. Strahlenther Onkol 2002;178:378–85.

    Article  PubMed  Google Scholar 

  42. Van de Bunt L, van der Heide U, Ketelaars M, et al. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: the impact of tumor regression. Int J Radiat Oncol Biol Phys 2006;64:189–96.

    PubMed  Google Scholar 

  43. Van Hoe L, Vanbeckevoort D, Oyen R, et al. Cervical carcinoma: optimized local staging with intravaginal contrast enhanced MR imaging — preliminary results. Radiology 1999;213:608–11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes C. A. Dimopoulos MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimopoulos, J.C.A., Schirl, G., Baldinger, A. et al. MRI Assessment of Cervical Cancer for Adaptive Radiotherapy. Strahlenther Onkol 185, 282–287 (2009). https://doi.org/10.1007/s00066-009-1918-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1918-7

Key Words:

Schlüsselwörter:

Navigation