Skip to main content

Advertisement

Log in

Functional Imaging to Predict Tumor Response in Locally Advanced Cervical Cancer

  • Gynecologic Cancers (NS Reed, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Worldwide, cervical cancer is the third commonest cancer. Prognostic factors for cervical cancer include tumor size, histological subtype, histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, nodal status and performance status. However these known parameters are not sufficient to accurately predict treatment response or prognosis. There is a clinical need for noninvasive prognostic biomarkers to provide more detailed tumor characterization at the baseline and/or early during therapy, which may permit personalized treatment and potentially improve outcomes. Functional imaging techniques have been developing rapidly over the past decade. Imaging parameters derived from PET/CT and functional MRI techniques are emerging as promising response biomarkers. This review details the current evidence and future potential of functional imaging to predict tumor response in locally advanced cervical carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cancer Research UK. Cervical cancer incidence statistics. 2012. http://info.cancerresearchuk.org/cancerstats/types/cervix/incidence/. Accessed 23 Jun 2013.

  2. Green JA, Kirwan JM, Tierney JF, Symonds P, Fresco L, Collingwood M, et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet. 2001;358:781–6.

    Article  PubMed  CAS  Google Scholar 

  3. Vale CL, Tierney JF, Davidson SE, Drinkwater KJ, Symonds P. Substantial improvement in UK cervical cancer survival with chemoradiotherapy: results of a Royal College of Radiologists' audit. Clin Oncol (R Coll Radiol). 2010;22:590–601.

    Article  CAS  Google Scholar 

  4. Eifel PJ, Winter K, Morris M, Levenback C, Grigsby PW, Cooper J, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of Radiation Therapy Oncology Group trial (RTOG) 90-01. J Clin Oncol. 2004;22:872–80.

    Article  PubMed  Google Scholar 

  5. Spensley S, Hunter RD, Livsey JE, Swindell R, Davidson SE. Clinical outcome for chemoradiotherapy in carcinoma of the cervix. Clin Oncol (R Coll Radiol). 2009;21:49–55.

    Article  CAS  Google Scholar 

  6. Quinn MA, Benedet JL, Odicino F, Maisonneuve P, Beller U, Creasman WT, et al. Carcinoma of the cervix uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006;95 Suppl 1:S43–S103.

    Article  PubMed  Google Scholar 

  7. Klopp AH, Eifel PJ. Biological predictors of cervical cancer response to radiation therapy. Semin Radiat Oncol. 2012;22:143–50.

    Article  PubMed  Google Scholar 

  8. Katanyoo K, Tangjitgamol S, Chongthanakorn M, Tantivatana T, Manusirivithaya S, Rongsriyam K, et al. Treatment outcomes of concurrent weekly carboplatin with radiation therapy in locally advanced cervical cancer patients. Gynecol Oncol. 2011;123:571–6.

    Article  PubMed  CAS  Google Scholar 

  9. Kristensen GB, Abeler VM, Risberg B, Trop C, Bryne M. Tumor size, depth of invasion, and grading of the invasive tumor front are the main prognostic factors in early squamous cell cervical carcinoma. Gynecol Oncol. 1999;74:245–51.

    Article  PubMed  CAS  Google Scholar 

  10. Mayr NA, Taoka T, Yuh WT, Denning LM, Zhen WK, Paulino AC, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2002;52:14–22.

    Article  PubMed  Google Scholar 

  11. Boss EA, Massuger LF, Pop LA, Verhoef LC, Huisman HJ, Boonstra H, et al. Post-radiotherapy contrast enhancement changes in fast dynamic MRI of cervical carcinoma. J Magn Reson Imaging. 2001;13:600–6.

    Article  PubMed  CAS  Google Scholar 

  12. Hricak H, Swift PS, Campos Z, Quivey JM, Gildengorin V, Goranson H. Irradiation of the cervix uteri: value of unenhanced and contrast-enhanced MR imaging. Radiology. 1993;189:381–8.

    PubMed  CAS  Google Scholar 

  13. Vincens E, Balleyguier C, Rey A, Uzan C, Zareski E, Gouy S, et al. Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy: correlation of radiologic findings with surgicopathologic results. Cancer. 2008;113:2158–65.

    Article  PubMed  Google Scholar 

  14. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.

    Article  PubMed  CAS  Google Scholar 

  15. Scottish Intercollegiate Guidelines Network. Guideline 9. Management of cervical cancer. 2008. http://www.sign.ac.uk/pdf/sign99.pdf. Accessed 23 Jun 2013.

  16. National Comprehensive Cancer Network Guidelines. Cervical cancer. Version3. 2013. http://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf. Accessed 23 Jun 2013.

  17. Royal College of Radiologists. Evidence based indications for the use of PET‐CT in the United Kingdom 2012. http://www.rcr.ac.uk/docs/radiology/pdf/BFCR(12)3_PETCT.pdf. Accessed 23 Jun 2013.

  18. Husain A, Akhurst T, Larson S, Alektiar K, Barakat RR, Chi DS. A prospective study of the accuracy of 18Fluorodeoxyglucose positron emission tomography (18FDG PET) in identifying sites of metastasis prior to pelvic exenteration. Gynecol Oncol. 2007;106:177–80.

    Article  PubMed  CAS  Google Scholar 

  19. Meads C, Auguste P, Davenport C, Malysiak S, Sundar S, Kowalska M, et al. Positron emission tomography/computerised tomography imaging in detecting and managing recurrent cervical cancer: systematic review of evidence, elicitation of subjective probabilities and economic modelling. Health Technol Assess. 2013;17:1–323.

    PubMed  CAS  Google Scholar 

  20. Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110:1738–44.

    Article  PubMed  Google Scholar 

  21. Xue F, Lin LL, Dehdashti F, Miller TR, Siegel BA, Grigsby PW. F-18 fluorodeoxyglucose uptake in primary cervical cancer as an indicator of prognosis after radiation therapy. Gynecol Oncol. 2006;101:147–51.

    Article  PubMed  CAS  Google Scholar 

  22. Lee YY, Choi CH, Kim CJ, Kang H, Kim TJ, Lee JW, et al. The prognostic significance of the SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) of the cervical tumor in PET imaging for early cervical cancer: preliminary results. Gynecol Oncol. 2009;115:65–8.

    Article  PubMed  Google Scholar 

  23. Pan L, Cheng J, Zhou M, Yao Z, Zhang Y. The SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) and serum squamous cell carcinoma antigen (SCC-ag) function as prognostic biomarkers in patients with primary cervical cancer. J Cancer Res Clin Oncol. 2012;138:239–46.

    Article  PubMed  CAS  Google Scholar 

  24. Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:353–9.

    Article  PubMed  Google Scholar 

  25. Chung HH, Kim JW, Han KH, Eo JS, Kang KW, Park NH, et al. Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol Oncol. 2011;120:270–4.

    Article  PubMed  Google Scholar 

  26. Crivellaro C, Signorelli M, Guerra L, De PE, Buda A, Dolci C, et al. 18F-FDG PET/CT can predict nodal metastases but not recurrence in early stage uterine cervical cancer. Gynecol Oncol. 2012;127:131–5.

    Article  PubMed  Google Scholar 

  27. Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;19:3745–9.

    PubMed  CAS  Google Scholar 

  28. •• Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutch DG, Powell MA, et al. Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol. 2010;28:2108–13. Nodal involvement detected by FDG-PET stratifies patient recurrence and survival outcomes and is more predictive of outcome than FIGO staging.

    Article  PubMed  Google Scholar 

  29. Narayan K, Fisher RJ, Bernshaw D, Shakher R, Hicks RJ. Patterns of failure and prognostic factor analyses in locally advanced cervical cancer patients staged by positron emission tomography and treated with curative intent. Int J Gynecol Cancer. 2009;19:912–8.

    Article  PubMed  Google Scholar 

  30. Kidd EA, El Naga I, Siegel BA, Dehdashti F, Grigsby PW. FDG-PET-based prognostic nomograms for locally advanced cervical cancer. Gynecol Oncol. 2012;127:136–40.

    Article  PubMed  Google Scholar 

  31. Salem A, Salem AF, Al-Ibraheem A, Lataifeh I, Almousa A, Jaradat I. Evidence for the use PET for radiation therapy planning in patients with cervical cancer: a systematic review. Hematol Oncol Stem Cell Ther. 2011;4:173–81.

    PubMed  CAS  Google Scholar 

  32. Beriwal S, Kannan N, Sukumvanich P, Richard SD, Kelley JL, Edwards RP, et al. Complete metabolic response after definitive radiation therapy for cervical cancer: patterns and factors predicting for recurrence. Gynecol Oncol. 2012;127:303–6.

    Article  PubMed  Google Scholar 

  33. Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutic S, Mutch DG, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77:1085–91.

    Article  PubMed  Google Scholar 

  34. Grigsby PW, Siegel BA, Dehdashti F, Rader J, Zoberi I. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol. 2004;22:2167–71.

    Article  PubMed  Google Scholar 

  35. Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA. 2007;298:2289–95.

    Article  PubMed  CAS  Google Scholar 

  36. • Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Metabolic response on post-therapy FDG-PET predicts patterns of failure after radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2012;83:18–90. FDG-PET 3 months after completion of CRT predicts response, outcome, and failure patterns.

    Article  Google Scholar 

  37. Kunos C, Radivoyevitch T, Abdul-Karim FW, Faulhaber P. 18F-Fluoro-2-deoxy-D-glucose positron emission tomography standard uptake value ratio as an indicator of cervical cancer chemoradiation therapeutic response. Int J Gynecol Cancer. 2011;21:1117–23.

    Article  PubMed  Google Scholar 

  38. Siva S, Herschtal A, Thomas JM, Bernshaw DM, Gill S, Hicks RJ, et al. Impact of post-therapy positron emission tomography on prognostic stratification and surveillance after chemoradiotherapy for cervical cancer. Cancer. 2011;117:3981–8.

    Article  PubMed  Google Scholar 

  39. Schwarz JK, Grigsby PW, Dehdashti F, Delbeke D. The role of 18F-FDG PET in assessing therapy response in cancer of the cervix and ovaries. J Nucl Med. 2009;50 Suppl 1:64S–73S.

    Article  PubMed  CAS  Google Scholar 

  40. Lin LL, Yang Z, Mutic S, Miller TR, Grigsby PW. FDG-PET imaging for the assessment of physiologic volume response during radiotherapy in cervix cancer. Int J Radiat Oncol Biol Phys. 2006;65:177–81.

    Article  PubMed  Google Scholar 

  41. Lin LL, Mutic S, Malyapa RS, Low DA, Miller TR, Vicic M, et al. Sequential FDG-PET brachytherapy treatment planning in carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2005;63:1494–501.

    Article  PubMed  Google Scholar 

  42. Nam H, Huh SJ, Ju SG, Park W, Lee JE, Choi JY, et al. 18F-Fluorodeoxyglucose positron emisson tomography/computed tomography guided conformal brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2012;84:e29–34.

    Article  PubMed  Google Scholar 

  43. Schwarz JK, Lin LL, Siegel BA, Miller TR, Grigsby PW. 18-F-Fluorodeoxyglucose-positron emission tomography evaluation of early metabolic response during radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2008;72:1502–7.

    Article  PubMed  Google Scholar 

  44. • Kidd EA, Thomas M, Siegel BA, Dehdashti F, Grigsby PW. Changes in cervical cancer FDG uptake during chemoradiation and association with response. Int J Radiat Oncol Biol Phys. 2013;85:116–22. FDG-PET early during CRT predicts the end of treatment response, with the 4-week time point during radiotherapy a better predictor than the 2-week time point.

    Article  PubMed  Google Scholar 

  45. Bjurberg M, Kjellen E, Ohlsson T, Bendahl PO, Brun E. Prediction of patient outcome with 2-deoxy-2-[18F]fluoro-D-glucose-positron emission tomography early during radiotherapy for locally advanced cervical cancer. Int J Gynecol Cancer. 2009;19:1600–5.

    Article  PubMed  Google Scholar 

  46. Lee JE, Huh SJ, Nam H, Ju SG. Early response of patients undergoing concurrent chemoradiotherapy for cervical cancer: a comparison of PET/CT and MRI. Ann Nucl Med. 2013;27:37–45.

    Article  PubMed  CAS  Google Scholar 

  47. Yoon MS, Nam TK, Chung WK, Jeong SY, Ahn SJ, Nah BS, et al. Metabolic response of pelvic and para-aortic lymph nodes during radiotherapy for carcinoma of the uterine cervix: using positron emission tomography/computed tomography. Int J Gynecol Cancer. 2011;21:699–705.

    PubMed  Google Scholar 

  48. • Yoon MS, Ahn SJ, Nah BS, Chung WK, Song HC, Yoo SW, et al. Metabolic response of lymph nodes immediately after RT is related with survival outcome of patients with pelvic node-positive cervical cancer using consecutive [18F]fluorodeoxyglucose-positron emission tomography/computed tomography. Int J Radiat Oncol Biol Phys. 2012;84:e491–7. There is a significant correlation between survival outcome and interim metabolic response of pelvic lymph nodes immediately after radiotherapy.

    Article  PubMed  Google Scholar 

  49. Mayr NA, Yuh WT, Taoka T, Wang JZ, Wu DH, Montebello JF, et al. Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol. 2006;187:65–72.

    Article  PubMed  Google Scholar 

  50. Mayr NA, Magnotta VA, Ehrhardt JC, Wheeler JA, Sorosky JI, Wen BC, et al. Usefulness of tumor volumetry by magnetic resonance imaging in assessing response to radiation therapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1996;35:915–24.

    Article  PubMed  CAS  Google Scholar 

  51. Gong QY, Tan LT, Romaniuk CS, Jones B, Brunt JN, Roberts N. Determination of tumour regression rates during radiotherapy for cervical carcinoma by serial MRI: comparison of two measurement techniques and examination of intraobserver and interobserver variability. Br J Radiol. 1999;72:62–72.

    PubMed  CAS  Google Scholar 

  52. Hatano K, Sekiya Y, Araki H, Sakai M, Togawa T, Narita Y, et al. Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 1999;45:639–44.

    Article  PubMed  CAS  Google Scholar 

  53. Nam H, Park W, Huh SJ, Bae DS, Kim BG, Lee JH, et al. The prognostic significance of tumor volume regression during radiotherapy and concurrent chemoradiotherapy for cervical cancer using MRI. Gynecol Oncol. 2007;107:320–5.

    Article  PubMed  Google Scholar 

  54. Wang JZ, Mayr NA, Zhang D, Li K, Grecula JC, Montebello JF, et al. Sequential magnetic resonance imaging of cervical cancer: the predictive value of absolute tumor volume and regression ratio measured before, during, and after radiation therapy. Cancer. 2010;116:5093–101.

    Article  PubMed  Google Scholar 

  55. Rizzo S, Summers P, Raimondi S, Belmonte M, Maniglio M, Landoni F, et al. Diffusion-weighted MR imaging in assessing cervical tumour response to nonsurgical therapy. Radiol Med. 2011;116:766–80.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y, Chen JY, Xie CM, Mo YX, Liu XW, Liu Y, et al. Diffusion-weighted magnetic resonance imaging for prediction of response of advanced cervical cancer to chemoradiation. J Comput Assist Tomogr. 2011;35:102–7.

    Article  PubMed  Google Scholar 

  57. Harry VN, Semple SI, Gilbert FJ, Parkin DE. Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol. 2008;111:213–20.

    Article  PubMed  Google Scholar 

  58. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    PubMed  CAS  Google Scholar 

  59. Sala E, Rockall A, Rangarajan D, Kubik-Huch RA. The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis. Eur J Radiol. 2010;76:367–85.

    Article  PubMed  Google Scholar 

  60. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188:1622–35.

    Article  PubMed  Google Scholar 

  61. Pickles MD, Gibbs P, Lowry M, Turnbull LW. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging. 2006;24:843–7.

    Article  PubMed  Google Scholar 

  62. Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol. 2005;15:71–8.

    Article  PubMed  Google Scholar 

  63. McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. Eur Radiol. 2008;18:1058–64.

    Article  PubMed  Google Scholar 

  64. Zhang Y, Liang BL, Gao L, Ye RX, Shen J, Zhong JL. Diffusion weighted imaging features of normal uterine cervix and cervical carcinoma. Ai Zheng. 2007;26:508–12.

    PubMed  CAS  Google Scholar 

  65. Chen J, Zhang Y, Liang B, Yang Z. The utility of diffusion-weighted MR imaging in cervical cancer. Eur J Radiol. 2010;74:e101–6.

    Article  PubMed  Google Scholar 

  66. Liu Y, Bai R, Sun H, Liu H, Wang D. Diffusion-weighted magnetic resonance imaging of uterine cervical cancer. J Comput Assist Tomogr. 2009;33:858–62.

    Article  PubMed  Google Scholar 

  67. Kilickesmez O, Bayramoglu S, Inci E, Cimilli T, Kayhan A. Quantitative diffusion-weighted magnetic resonance imaging of normal and diseased uterine zones. Acta Radiol. 2009;50:340–7.

    Article  PubMed  CAS  Google Scholar 

  68. Payne GS, Schmidt M, Morgan VA, Giles S, Bridges J, Ind T, et al. Evaluation of magnetic resonance diffusion and spectroscopy measurements as predictive biomarkers in stage 1 cervical cancer. Gynecol Oncol. 2010;116:246–52.

    Article  PubMed  CAS  Google Scholar 

  69. Downey K, Riches SF, Morgan VA, Giles SL, Attygalle AD, Ind TE, et al. Relationship between imaging biomarkers of stage I cervical cancer and poor-prognosis histologic features: quantitative histogram analysis of diffusion-weighted MR images. AJR Am J Roentgenol. 2013;200:314–20.

    Article  PubMed  Google Scholar 

  70. Liu Y, Liu H, Bai X, Ye Z, Sun H, Bai R, et al. Differentiation of metastatic from non-metastatic lymph nodes in patients with uterine cervical cancer using diffusion-weighted imaging. Gynecol Oncol. 2011;122:19–24.

    Article  PubMed  Google Scholar 

  71. Nakai G, Matsuki M, Inada Y, Tatsugami F, Tanikake M, Narabayashi I, et al. Detection and evaluation of pelvic lymph nodes in patients with gynecologic malignancies using body diffusion-weighted magnetic resonance imaging. J Comput Assist Tomogr. 2008;32:764–8.

    Article  PubMed  Google Scholar 

  72. Choi EK, Kim JK, Choi HJ, Park SH, Park BW, Kim N, et al. Node-by-node correlation between MR and PET/CT in patients with uterine cervical cancer: diffusion-weighted imaging versus size-based criteria on T2WI. Eur Radiol. 2009;19:2024–32.

    Article  PubMed  Google Scholar 

  73. Park SO, Kim JK, Kim KA, Park BW, Kim N, Cho G, et al. Relative apparent diffusion coefficient: determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer. J Magn Reson Imaging. 2009;29:383–90.

    Article  PubMed  Google Scholar 

  74. Lin G, Ho KC, Wang JJ, Ng KK, Wai YY, Chen YT, et al. Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T. J Magn Reson Imaging. 2008;28:128–35.

    Article  PubMed  Google Scholar 

  75. •• Somoye G, Harry V, Semple S, Plataniotis G, Scott N, Gilbert FJ, et al. Early diffusion weighted magnetic resonance imaging can predict survival in women with locally advanced cancer of the cervix treated with combined chemo-radiation. Eur Radiol. 2012;22:2319–27. This is a prospective study of 20 patients showing functional DWI at 2 weeks during CRT for LACC is predictive of the time to progression and OS.

    Article  PubMed  Google Scholar 

  76. Liu Y, Bai R, Sun H, Liu H, Zhao X, Li Y. Diffusion-weighted imaging in predicting and monitoring the response of uterine cervical cancer to combined chemoradiation. Clin Radiol. 2009;64:1067–74.

    Article  PubMed  CAS  Google Scholar 

  77. Rosenkrantz AB. Histogram-based apparent diffusion coefficient analysis: an emerging tool for cervical cancer characterization? AJR Am J Roentgenol. 2013;200:311–3.

    Article  PubMed  Google Scholar 

  78. Kyriazi S, Collins DJ, Messiou C, Pennert K, Davidson RL, Giles SL, et al. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging—value of histogram analysis of apparent diffusion coefficients. Radiology. 2011;261:182–92.

    Article  PubMed  Google Scholar 

  79. Hockel M, Vorndran B, Schlenger K, Baussmann E, Knapstein PG. Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol. 1993;51:141–9.

    Article  PubMed  CAS  Google Scholar 

  80. • Mayr NA, Huang Z, Wang JZ, Lo SS, Fan JM, Grecula JC, et al. Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys. 2012;83:972–9. This study shows that functional tumor heterogeneity as characterized by DCE-MRI may predict outcome.

    Article  PubMed  Google Scholar 

  81. Zahra MA, Tan LT, Priest AN, Graves MJ, Arends M, Crawford RA, et al. Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys. 2009;74:766–73.

    Article  PubMed  Google Scholar 

  82. • Nakamura K, Joja I, Kodama J, Hongo A, Hiramatsu Y. Measurement of SUVmax plus ADCmin of the primary tumour is a predictor of prognosis in patients with cervical cancer. Eur J Nucl Med Mol Imaging. 2012;39:283–90. High SUV max together with a low ADC min of the primary tumor is an important predictive factor for identifying cervical cancer patients with a poor prognosis.

    Article  PubMed  Google Scholar 

  83. Ho KC, Lin G, Wang JJ, Lai CH, Chang CJ, Yen TC. Correlation of apparent diffusion coefficients measured by 3T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur J Nucl Med Mol Imaging. 2009;36:200–8.

    Article  PubMed  Google Scholar 

  84. Potter R, Haie-Meder C, Van LE, Barillot I, De BM, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC ESTRO Working Group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.

    Article  PubMed  Google Scholar 

  85. Haie-Meder C, Potter R, Van LE, Briot E, De BM, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.

    Article  PubMed  Google Scholar 

  86. Royal College of Radiologists. Implementing image‐guided brachytherapy for cervical cancer in the U.K. 2009. https://www.rcr.ac.uk/docs/oncology/pdf/BFCO(09)1_cervix.pdf. Accessed 23 June 2013.

  87. Viswanathan AN, Thomadsen B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy. 2012;11:33–46.

    Article  PubMed  Google Scholar 

  88. Hong JH, Tsai CS, Lai CH, Chang TC, Wang CC, Chou HH, et al. Risk stratification of patients with advanced squamous cell carcinoma of cervix treated by radiotherapy alone. Int J Radiat Oncol Biol Phys. 2005;63:492–9.

    Article  PubMed  Google Scholar 

  89. Bodurka-Bevers D, Morris M, Eifel PJ, Levenback C, Bevers MW, Lucas KR, et al. Posttherapy surveillance of women with cervical cancer: an outcomes analysis. Gynecol Oncol. 2000;78:187–93.

    Article  PubMed  CAS  Google Scholar 

  90. UK Clinical Research network Study portfolio. INTERLACE. 2011. http://public.ukcrn.org.uk/search/StudyDetail.aspx?StudyID=11775. Accessed 8 Jul 2013.

  91. Australia New Zealand Clinical Trials Registry. The OUTBACK Trial. 2010. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12610000732088. Accessed 8 Jul 2013.

  92. Tewari KS, Sill M, Long HJ, Ramondetta LM, Landrum LM, Oaknin A, et al. Incorporation of bevacizumab in the treatment of recurrent and metastatic cervical cancer: A phase III randomized trial of the Gynecologic Oncology Group. J Clin Oncol 2013;31 Suppl abstr 3.

  93. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.

    Article  PubMed  Google Scholar 

  94. Yang F, Thomas MA, Dehdashti F, Grigsby PW. Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging. 2013;40:716–27.

    Article  PubMed  CAS  Google Scholar 

  95. Fyles AW, Milosevic M, Wong R, Kavanagh MC, Pintilie M, Sun A, et al. Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol. 1998;48:149–56.

    Article  PubMed  CAS  Google Scholar 

  96. Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med. 2008;49:201–5.

    Article  PubMed  CAS  Google Scholar 

  97. Grigsby PW, Malyapa RS, Higashikubo R, Schwarz JK, Welch MJ, Huettner PC, et al. Comparison of molecular markers of hypoxia and imaging with (60)Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol. 2007;9:278–83.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Tara D. Barwick, Alexandra Taylor, and Andrea Rockall declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara D. Barwick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barwick, T.D., Taylor, A. & Rockall, A. Functional Imaging to Predict Tumor Response in Locally Advanced Cervical Cancer. Curr Oncol Rep 15, 549–558 (2013). https://doi.org/10.1007/s11912-013-0344-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-013-0344-2

Keywords

Navigation