Skip to main content
Top

13-06-2017 | Breast cancer | Article

IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients

Journal: Breast Cancer Research and Treatment

Authors: Carlo Palmieri, Rob C. Stein, Xinxue Liu, Emma Hudson, Hanna Nicholas, Hironobu Sasano, Fouzia Guestini, Chris Holcombe, Sophie Barrett, Laura Kenny, Sadie Reed, Adrian Lim, Larry Hayward, Sacha Howell, R. Charles Coombes, On behalf of the IRIS trial participants

Publisher: Springer US

Abstract

Purpose

Irosustat is a first-generation, orally active, irreversible steroid sulfatase inhibitor. We performed a multicentre, open label phase II trial of the addition of Irosustat to a first-line aromatase inhibitor (AI) in patients with advanced BC to evaluate the safety of the combination and to test the hypothesis that the addition of Irosustat to AI may further suppress estradiol levels and result in clinical benefit.

Experimental design

Postmenopausal women with ER-positive locally advanced or metastatic breast cancer who had derived clinical benefit from a first-line AI and who subsequently progressed were enrolled. The first-line AI was continued and Irosustat (40 mg orally daily) added. The primary endpoint was clinical benefit rate (CBR). Secondary endpoints included safety, tolerability, and pharmacodynamic end points.

Results

Twenty-seven women were recruited, four discontinued treatment without response assessment. Based on local reporting, the CBR was 18.5% (95% CI 6.3–38.1%) on an intent to treat basis, increasing to 21.7% (95% CI 7.4–43.7%) by per-protocol analysis. In those patients that achieved clinical benefit (n = 5), the median (interquartile range) duration was 9.4 months (8.1–11.3) months. The median progression-free survival time was 2.7 months (95% CI 2.5–4.6) in both the ITT and per-protocol analyses. The most frequently reported grade 3/4 toxicities were dry skin (28%), nausea (13%), fatigue (13%), diarrhoea (8%), headache (7%), anorexia (7%) and lethargy (7%).

Conclusions

The addition of Irosustat to aromatase inhibitor therapy resulted in clinical benefit with an acceptable safety profile. The study met its pre-defined success criterion by both local and central radiological assessments.
Literature
1.
Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A (2009) History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 30:343–375CrossRefPubMed
2.
Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ (2014) Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 382:695–723CrossRefPubMed
3.
Utsumi T, Yoshimura N, Maruta M, Takeuchi S, Ando J, Mizoguchi Y et al (2000) Correlation of cyclin D1 mRNA levels with clinico-pathological parameters and clinical outcome in human breast carcinomas. Int J Cancer 89:39–43CrossRefPubMed
4.
Utsumi T, Yoshimura N, Maruta M, Takeuchi S, Ando J, Maeda K et al (1999) Significance of steroid sulfatase expression in human breast cancer. Breast Cancer 25:298–300CrossRef
5.
Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T et al (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Can Res 63:2762–2770
6.
Billich A, Nussbaumer P, Lehr P (2000) Stimulation of MCF-7 breast cancer cell proliferation by estrone sulfate and dehydroepiandrosterone sulfate: inhibition by novel non-steroidal steroid sulfatase inhibitors. J Steroid Biochem Mol Biol 73:225–235CrossRefPubMed
7.
Morris KT, Toth-Fejel S, Schmidt J, Fletcher WS, Pommier RF (2001) High dehydroepiandrosterone-sulfate predicts breast cancer progression during new aromatase inhibitor therapy and stimulates breast cancer cell growth in tissue culture: a renewed role for adrenalectomy. Surgery 130:947–953CrossRefPubMed
8.
Chanplakorn N, Chanplakorn P, Suzuki T, Ono K, Chan MS, Miki Y et al (2010) Increased estrogen sulfatase (STS) and 17beta-hydroxysteroid dehydrogenase type 1(17beta-HSD1) following neoadjuvant aromatase inhibitor therapy in breast cancer patients. Breast Cancer Res Treat 120:639–648CrossRefPubMed
9.
Malini B, Purohit A, Ganeshapillai D, Woo LW, Potter BV, Reed MJ (2000) Inhibition of steroid sulphatase activity by tricyclic coumarin sulphamates. J Steroid Biochem Mol Biol 75:253–258CrossRefPubMed
10.
Stanway SJ, Purohit A, Woo LW, Sufi S, Vigushin D, Ward R et al (2006) Phase I study of STX 64 (667 Coumate) in breast cancer patients: the first study of a steroid sulfatase inhibitor. Clin Cancer Res 12:1585–1592CrossRefPubMed
11.
Coombes RC, Cardoso F, Isambert N, Lesimple T, Soulié P, Peraire C et al (2013) A phase I dose escalation study to determine the optimal biological dose of irosustat, an oral steroid sulfatase inhibitor, in postmenopausal women with estrogen receptor-positive breast cancer. Breast Cancer Res Treat 140:73–82CrossRefPubMed
12.
Hobkirk R (1993) Steroid sulfation current concepts. Trends Endocrinol Metab 4:69–74CrossRefPubMed
13.
Ruder H, Loriaux L, Lipsett M (1972) Estrone sulfate: production rate and metabolism in man. J Clin Investig 51:1020–1033CrossRefPubMedPubMedCentral
14.
Pizzagalli F, Varga Z, Huber RD, Folkers G, Meier PJ, St-Pierre MV (2003) Identification of steroid sulfate transport processes in the human mammary gland. J Clin Endocrinol Metab 88:3902–3912CrossRefPubMed
15.
Adams J, Garcia M, Rochefort H (1981) Estrogenic effects of physiological concentrations of 5-androstene-3 beta, 17 beta-diol and its metabolism in MCF7 human breast cancer cells. Cancer Res 41:4720–4726PubMed
16.
Stein RC, Dowsett M, Hedley A, Gazet JC, Ford HT, Coombes RC (1990) The clinical and endocrine effects of 4-hydroxyandrostenedione alone and in combination with goserelin in premenopausal women with advanced breast cancer. Br J Cancer 62:679–683CrossRefPubMedPubMedCentral
17.
Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. NEJM 366:520–529CrossRefPubMed
18.
Johnston SR, Kilburn LS, Ellis P, Dodwell D, Cameron D et al (2013) Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): a composite, multicentre, phase 3 randomised trial. Lancet Oncol 14:989–998CrossRefPubMed
19.
Turner NC, Ro J, André F, Loi S, Verma S, Iwata H et al (2015) Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373:209–219CrossRefPubMed
20.
Maggiolini M, Donze O, Jeannin E, Ando S, Picard D (1999) Adrenal androgens stimulate the proliferation of breast cancer cells as direct activators of estrogen receptor alpha. Cancer Res 59:4864–4869PubMed
21.
Bjerregaard-Olesen C, Ghisari M, Kjeldsen LS, Wielsøe M, Bonefeld-Jørgensen EC (2016) Estrone sulfate and dehydroepiandrosterone sulfate: transactivation of the estrogen and androgen receptor. Steroids 105:50–58CrossRefPubMed
22.
Poulin R, Labrie F (1986) Stimulation of cell proliferation and estrogenic response by adrenal C19-delta 5-steroids in the ZR-75-1 human breast cancer cell line. Cancer Res 46:4933–4937PubMed
23.
Dauvois S, Labrie F (1989) Androstenedione and androst-5-ene-3 beta,17 beta-diol stimulate DMBA-induced rat mammary tumors–role of aromatase. Breast Cancer Res Treat 13:61–69CrossRefPubMed
24.
Shin I, Miller T, Arteaga CL (2006) ErbB receptor signaling and therapeutic resistance to aromatase inhibitors. Clin Cancer Res 12:1008s–1012sCrossRefPubMed
25.
O’Hara J, Vareslija D, McBryan J, Bane F, Tibbitts P, Byrne C et al (2012) AIB1:eRα transcriptional activity is selectively enhanced in aromatase inhibitor-resistant breast cancer cells. Clin Cancer Res 18:3305–3315CrossRefPubMed
26.
Elliott KM, Dent J, Stanczyk FZ, Woodley L, Coombes RC, Purohit A et al (2014) Effects of aromatase inhibitors and body mass index on steroid hormone levels in women with early and advanced breast cancer. Br J Surg 101:939–948CrossRefPubMed
27.
Sikora MJ, Strumba V, Lipmann ME, Johnson MD, Rae JM (2012) Mechanisms of estrogen-independent breast cancer growth driven by low estrogen concentrations are unique versus complete estrogen deprivation. Breast Cancer Res Treat 134:1027–1039CrossRefPubMedPubMedCentral
28.
Sikora MJ, Cordero KE, Larios JM, Johnson MD, Lippman ME, Rae JM (2009) The androgen metabolite 5alpha-androstane-3beta,17beta-diol (3betaAdiol) induces breast cancer growth via estrogen receptor: implications for aromatase inhibitor resistance. Breast Cancer Res Treat 115:289–296CrossRefPubMed
29.
Stanway SJ, Palmieri C, Stanczyk FZ, Folkerd EJ, Dowsett M, Ward R et al (2011) Effect of tamoxifen or anastrozole on steroid sulfatase activity and serum androgen concentrations in postmenopausal women with breast cancer. Anticancer Res 31:1367–1372PubMed
30.
Sharma A, Crook T, Thompson A, Palmieri C (2010) Why biopsying metastatic breast cancer should be routine. Nat Rev Clin Oncol 7:72–74CrossRefPubMed
31.
Marinković-Ilsen A, Koppe JG, Jöbsis AC, de Groot WP (1978) Enzymatic basis of typical X-linked ichthyosis. Lancet 2:1097CrossRefPubMed
32.
Fuqua SA, Wiltschke C, Zhang QX, Borg A, Castles CG, Friedrichs WE, Hopp T, Hilsenbeck S, Mohsin S, O’Connell P, Allred DC (2000) A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res 60:4026–4029PubMed
33.
Fuqua SA (2001) The role of estrogen receptors in breast cancer metastasis. J Mammary Gland Biol Neoplasia 6:407–417CrossRefPubMed
34.
Wang P, Bahreini A, Gyanchandani R, Lucas PC, Hartmaier RJ, Watters RJ et al (2016) Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin Cancer Res 22:1130–1137CrossRefPubMed
35.
Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S et al (2016) Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 375:1738–1748CrossRefPubMed