Skip to main content
Top

28-06-2018 | PARP inhibitors | Article

Synthetic lethal therapies for cancer: what’s next after PARP inhibitors?

Journal: Nature Reviews Clinical Oncology

Authors: Alan Ashworth, Christopher J. Lord

Publisher: Nature Publishing Group UK

Abstract

The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field.
Literature
1.
Bridges, C. The origin of variations in sexual and sex-limited characters. Am. Nat. 56, 51–63 (1922).CrossRef
2.
Dobzhansky, T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura. Genetics 31, 269–290 (1946).PubMedPubMedCentral
3.
Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic interactions in cancer progression and treatment. Cell 145, 30–38 (2011).PubMedCrossRef
4.
Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).PubMedCrossRef
5.
Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).PubMedCrossRef
6.
Brummelkamp, T. R. & Bernards, R. New tools for functional mammalian cancer genetics. Nat. Rev. Cancer 3, 781–789 (2003).PubMedCrossRef
7.
Rancati, G., Moffat, J., Typas, A. & Pavelka, N. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49 (2018).PubMedCrossRef
8.
Tischler, J., Lehner, B. & Fraser, A. G. Evolutionary plasticity of genetic interaction networks. Nat. Genet. 40, 390–391 (2008).PubMedCrossRef
9.
Muller, F. L., Aquilanti, E. A. & DePinho, R. A. Collateral lethality: a new therapeutic strategy in oncology. Trends Cancer 1, 161–173 (2015).PubMedPubMedCentralCrossRef
10.
Muller, F. L. et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488, 337–342 (2012).PubMedPubMedCentralCrossRef
11.
Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).PubMedCrossRefPubMedCentral
12.
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).PubMedCrossRef
13.
Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).PubMedCrossRef
14.
Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).PubMedCrossRef
15.
Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).PubMedCrossRef
16.
Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).PubMedCrossRef
17.
Lord, C. J. & Ashworth, A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 19, 1381–1388 (2013).PubMedCrossRef
18.
Drean, A. et al. Modeling therapy resistance in BRCA1/2-mutant cancers. Mol. Cancer Ther. 16, 2022–2034 (2017).PubMedCrossRefPubMedCentral
19.
Drean, A., Lord, C. J. & Ashworth, A. PARP inhibitor combination therapy. Crit. Rev. Oncol. Hematol. 108, 73–85 (2016).PubMedCrossRef
20.
Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).PubMedCrossRef
21.
Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).PubMedCrossRef
22.
Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).PubMedCrossRef
23.
McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006).PubMedCrossRef
24.
Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).PubMedPubMedCentralCrossRef
25.
Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).PubMedPubMedCentralCrossRef
26.
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).CrossRef
27.
Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518, 258–262 (2015).PubMedPubMedCentralCrossRef
28.
Mateos-Gomez, P. A. et al. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).PubMedPubMedCentralCrossRef
29.
Murfuni, I. et al. Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function. PLOS Genet. 9, e1003910 (2013).PubMedPubMedCentralCrossRef
30.
Cramer-Morales, K. et al. Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122, 1293–1304 (2013).PubMedPubMedCentralCrossRef
31.
Feng, Z. et al. Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc. Natl Acad. Sci. USA 108, 686–691 (2011).PubMedCrossRef
32.
Lok, B. H. et al. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin. Cancer Res. 23, 523–535 (2017).PubMedCrossRef
33.
Hengel, S. R., Spies, M. A. & Spies, M. Small-molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer therapy. Cell Chem. Biol. 24, 1101–1119 (2017).PubMedCrossRefPubMedCentral
34.
Lai, X. et al. MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells. Nat. Commun. 8, 15983 (2017).PubMedPubMedCentralCrossRef
35.
Garaycoechea, J. I. et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171–177 (2018).PubMedPubMedCentralCrossRef
36.
Tacconi, E. M. et al. BRCA1 and BRCA2 tumor suppressors protect against endogenous acetaldehyde toxicity. EMBO Mol. Med. 9, 1398–1414 (2017).PubMedPubMedCentralCrossRef
37.
Mohni, K. N., Kavanaugh, G. M. & Cortez, D. ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res. 74, 2835–2845 (2014).PubMedPubMedCentralCrossRef
38.
Kwok, M. et al. Synthetic lethality in chronic lymphocytic leukaemia with DNA damage response defects by targeting the ATR pathway. Lancet 385 (Suppl. 1), 58 (2015).PubMedCrossRef
39.
Williamson, C. T. et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7, 13837 (2016).PubMedPubMedCentralCrossRef
40.
Brown, J. S., O’Carrigan, B., Jackson, S. P. & Yap, T. A. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 7, 20–37 (2017).PubMedCrossRef
41.
McManus, K. J., Barrett, I. J., Nouhi, Y. & Hieter, P. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc. Natl Acad. Sci. USA 106, 3276–3281 (2009).PubMedCrossRefPubMedCentral
42.
Pfister, S. X. & Ashworth, A. Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug Discov. 16, 241–263 (2017).PubMedCrossRef
43.
Wang, X. et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependant on the activity of BRG1, the ATPase of the SWI/SNF chromatin remodelling complex. Cancer Res. 69, 8094–8101 (2009).PubMedPubMedCentralCrossRef
44.
Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).PubMedCrossRefPubMedCentral
45.
Oike, T. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013).PubMedCrossRef
46.
Orvis, T. et al. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res. 74, 6486–6498 (2014).PubMedPubMedCentralCrossRef
47.
Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014).PubMedPubMedCentralCrossRef
48.
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).PubMedPubMedCentralCrossRef
49.
Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).PubMedPubMedCentralCrossRef
50.
Bitler, B. G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).PubMedCrossRef
51.
Januario, T. et al. PRC2-mediated repression of SMARCA2 predicts EZH2 inhibitor activity in SWI/SNF mutant tumors. Proc. Natl Acad. Sci. USA 114, 12249–12254 (2017).PubMedCrossRefPubMedCentral
52.
DeLair, D. F. et al. The genetic landscape of endometrial clear cell carcinomas. J. Pathol. 243, 230–241 (2017).PubMedCrossRefPubMedCentral
53.
Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).PubMedCrossRef
54.
Rokutan, H. et al. Comprehensive mutation profiling of mucinous gastric carcinoma. J. Pathol. 240, 137–148 (2016).PubMedCrossRef
55.
Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).PubMedPubMedCentralCrossRef
56.
Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).PubMedPubMedCentralCrossRef
57.
Shen, J. et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 5, 752–767 (2015).PubMedPubMedCentralCrossRef
58.
Samartzis, E. P. et al. Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget 5, 5295–5303 (2014).PubMedPubMedCentralCrossRef
59.
Miller, R. E. et al. Synthetic lethal targeting of ARID1A-mutant ovarian clear cell tumors with dasatinib. Mol. Cancer Ther. 15, 1472–1484 (2016).PubMedCrossRef
60.
Bitler, B. G. et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat. Cell Biol. 19, 962–973 (2017).PubMedPubMedCentralCrossRef
61.
Chantalat, S. et al. Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. Genome Res. 21, 1426–1437 (2011).PubMedPubMedCentralCrossRef
62.
Pfister, S. X. et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28, 557–568 (2015).PubMedPubMedCentralCrossRef
63.
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).PubMedPubMedCentralCrossRef
64.
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).PubMedPubMedCentralCrossRef
65.
Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821–834 (2009).PubMedCrossRef
66.
Frohling, S. & Scholl, C. STK33 kinase is not essential in KRAS-dependent cells—letter. Cancer Res. 71, 7716 (2011).PubMedCrossRef
67.
Downward, J. RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin. Cancer Res. 21, 1802–1809 (2015).PubMedPubMedCentralCrossRef
68.
Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903 (2017).PubMedPubMedCentralCrossRef
69.
Aguirre, A. J. & Hahn, W. C. Synthetic lethal vulnerabilities in KRAS-mutant cancers. Cold Spring Harb. Perspect. Med. https://​doi.​org/​10.​1101/​cshperspect.​a031518 (2017).CrossRef
70.
Grabocka, E., Commisso, C. & Bar-Sagi, D. Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response. Clin. Cancer Res. 21, 1243–1247 (2015).PubMedCrossRef
71.
Gilad, O. et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res. 70, 9693–9702 (2010).PubMedPubMedCentralCrossRef
72.
Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).PubMedPubMedCentralCrossRef
73.
Dietlein, F. et al. A synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant cancer. Cell 162, 146–159 (2015).PubMedCrossRef
74.
De Raedt, T. et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 20, 400–413 (2011).PubMedPubMedCentralCrossRef
75.
Kumar, M. S. et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149, 642–655 (2012).PubMedCrossRef
76.
Steckel, M. et al. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res. 22, 1227–1245 (2012).PubMedPubMedCentralCrossRef
77.
Zhao, D. et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature 542, 484–488 (2017).PubMedPubMedCentralCrossRef
78.
Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228 (2011).PubMedCrossRef
79.
Gill, A. J. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 72, 106–116 (2018).PubMedCrossRef
80.
Cardaci, S. et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17, 1317–1326 (2015).PubMedPubMedCentralCrossRef
81.
Dang, L. & Su, S. M. Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate: from basic discovery to therapeutics development. Annu. Rev. Biochem. 86, 305–331 (2017).PubMedCrossRef
82.
Stein, E. M. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731 (2017).PubMedPubMedCentralCrossRef
83.
Sulkowski, P. L. et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci. Transl Med. 9, eaal2463 (2017).PubMedPubMedCentralCrossRef
84.
Molenaar, R. J. et al. IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors. Clin. Cancer Res. 24, 1705–1715 (2018).PubMedCrossRefPubMedCentral
85.
Chan, S. M. et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 21, 178–184 (2015).PubMedPubMedCentralCrossRef
86.
Karpel-Massler, G. et al. Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat. Commun. 8, 1067 (2017).PubMedPubMedCentralCrossRef
87.
Kaelin, W. G. in Kidney Cancer: Principles and Practice (eds Lara, P. N. & Jonasch, E.) 31–57 (Springer International Publishing, 2015).
88.
Chakraborty, A. A. HIF activation causes synthetic lethality between the VHL tumor suppressor and the EZH1histone methyltransferase. Sci. Transl Med. 9, eaal5272 (2017).PubMedPubMedCentralCrossRef
89.
Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl Med. 3, 94ra70 (2011).PubMedPubMedCentral
90.
Thompson, J. M. et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 36, 1080–1089 (2017).PubMedCrossRef
91.
Turcotte, S. et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14, 90–102 (2008).PubMedPubMedCentralCrossRef
92.
Mavrakis, K. J. et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).PubMedCrossRef
93.
Marjon, K. et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 15, 574–587 (2016).PubMedCrossRef
94.
Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).PubMedPubMedCentralCrossRef
95.
Nobori, T. et al. Absence of methylthioadenosine phosphorylase in human gliomas. Cancer Res. 51, 3193–3197 (1991).PubMed
96.
Dey, P. et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 542, 119–123 (2017).PubMedPubMedCentralCrossRef
97.
Dang, C. V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 3, a014217 (2013).PubMedPubMedCentralCrossRef
98.
Whitfield, J. R., Beaulieu, M. E. & Soucek, L. Strategies to inhibit Myc and their clinical applicability. Front. Cell Dev. Biol. 5, 10 (2017).PubMedPubMedCentralCrossRef
99.
Toyoshima, M. et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc. Natl Acad. Sci. USA 109, 9545–9550 (2012).PubMedCrossRefPubMedCentral
100.
Campaner, S. et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat. Cell Biol. 12, 54–59 (2010).PubMedCrossRef
101.
Goga, A., Yang, D., Tward, A. D., Morgan, D. O. & Bishop, J. M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat. Med. 13, 820–827 (2007).PubMedCrossRef
102.
Wang, Y., Miao, Z. H., Pommier, Y., Kawasaki, E. S. & Player, A. Characterization of mismatch and high-signal intensity probes associated with Affymetrix genechips. Bioinformatics 23, 2088–2095 (2007).PubMedCrossRef
103.
Kessler, J. D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012).PubMedCrossRef
104.
Horiuchi, D. et al. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat. Med. 22, 1321–1329 (2016).PubMedPubMedCentralCrossRef
105.
Poortinga, G., Quinn, L. M. & Hannan, R. D. Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 34, 403–412 (2015).PubMedCrossRef
106.
Koh, C. M., Sabo, A. & Guccione, E. Targeting MYC in cancer therapy: RNA processing offers new opportunities. Bioessays 38, 266–275 (2016).PubMedPubMedCentralCrossRef
107.
Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016).PubMedPubMedCentralCrossRef
108.
Gordon, G. M. & Du, W. Targeting Rb inactivation in cancers by synthetic lethality. Am. J. Cancer Res. 1, 773–786 (2011).PubMedPubMedCentral
109.
Buchkovich, K., Duffy, L. A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58, 1097–1105 (1989).PubMedCrossRef
110.
Chen, P. L., Scully, P., Shew, J. Y., Wang, J. Y. & Lee, W. H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58, 1193–1198 (1989).PubMedCrossRef
111.
Xiao, H. & Goodrich, D. W. The retinoblastoma tumor suppressor protein is required for efficient processing and repair of trapped topoisomerase II-DNA-cleavable complexes. Oncogene 24, 8105–8113 (2005).PubMedPubMedCentralCrossRef
112.
Li, B., Gordon, G. M., Du, C. H., Xu, J. & Du, W. Specific killing of Rb mutant cancer cells by inactivating TSC2. Cancer Cell 17, 469–480 (2010).PubMedPubMedCentralCrossRef
113.
Zhang, T. et al. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities. PLOS Genet. 10, e1004357 (2014).PubMedPubMedCentralCrossRef
114.
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).PubMedPubMedCentralCrossRef
115.
McDonald, E. R. III et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592 (2017).PubMedCrossRef
116.
Bertoli, C., Herlihy, A. E., Pennycook, B. R., Kriston-Vizi, J. & de Bruin, R. A. M. Sustained E2F-dependent transcription is a key mechanism to prevent replication-stress-induced DNA damage. Cell Rep. 15, 1412–1422 (2016).PubMedPubMedCentralCrossRef
117.
Pickering, M. T. & Kowalik, T. F. Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25, 746–755 (2006).PubMedCrossRef
118.
Nittner, D. et al. Synthetic lethality between Rb, p53 and Dicer or miR-17-92 in retinal progenitors suppresses retinoblastoma formation. Nat. Cell Biol. 14, 958–965 (2012).PubMedCrossRef
119.
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).PubMedCrossRef
120.
Reinhardt, H. C. & Schumacher, B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 28, 128–136 (2012).PubMedPubMedCentralCrossRef
121.
Gurpinar, E. & Vousden, K. H. Hitting cancers’ weak spots: vulnerabilities imposed by p53 mutation. Trends Cell Biol. 25, 486–495 (2015).PubMedCrossRef
122.
Marcotte, R. et al. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2, 172–189 (2012).PubMedCrossRef
123.
Campbell, J. et al. Large-scale profiling of kinase dependencies in cancer cell lines. Cell Rep. 14, 2490–2501 (2016).PubMedPubMedCentralCrossRef
124.
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).PubMedPubMedCentralCrossRef
125.
Ryan, C. J., Kennedy, S., Bajrami, I., Matallanas, D. & Lord, C. J. A. Compendium of co-regulated protein complexes in breast cancer reveals collateral loss events. Cell Syst. 5, 399–409.e5 (2017).PubMedPubMedCentralCrossRef
126.
Kampmann, M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol. 13, 406–416 (2018).PubMedCrossRef
127.
Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).PubMedPubMedCentralCrossRef
128.
Liu, H. et al. Identifying and targeting sporadic oncogenic genetic aberrations in mouse models of triple negative breast cancer. Cancer Discov. 8, 354–369 (2018).PubMedCrossRef
129.
Palmer, A. C. & Sorger, P. K. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171, 1678–1691 (2017).PubMedCrossRefPubMedCentral
130.
Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).PubMedCrossRef
131.
Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells clinical update. Nat. Rev. Clin. Oncol. 12, 445–464 (2015).PubMedPubMedCentralCrossRef
132.
Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).PubMedCrossRef
133.
Mora, J. et al. Comprehensive analysis of the 9p21 region in neuroblastoma suggests a role for genes mapping to 9p21–23 in the biology of favourable stage 4 tumours. Brit. J. Cancer 91, 1112–1118 (2004).PubMedCrossRefPubMedCentral
134.
Ledermann, J. A. et al. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol. 17, 1579–1589 (2016).PubMedCrossRef
135.
Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).PubMedCrossRef
136.
Swisher, E. M. et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 18, 75–87 (2017).PubMedCrossRef
137.
Mirza, M. R. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375, 2154–2164 (2016).PubMedCrossRef