Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The retinoblastoma tumor suppressor protein is required for efficient processing and repair of trapped topoisomerase II-DNA-cleavable complexes

Abstract

Type II topoisomerases (TOP2) introduce transient double-stranded DNA breaks through a covalent TOP2–DNA intermediate. Anticancer agents like etoposide kill cells by trapping covalent TOP2–DNA cleavable complexes. Pathways influencing the repair of cleavable complexes are expected to be major determinants of therapeutic response to etoposide. Rb1 is required to enforce cell cycle checkpoints in response to DNA damage, but evidence for a direct role in the processing and repair of DNA lesions is lacking. We observe that degradation of trapped TOP2-cleavable complexes, liberation of DNA strand breaks, and repair of those breaks occurs more efficiently in cells expressing Rb1 protein (pRb). Cells lacking pRb are more sensitive to etoposide-induced cytotoxicity. Rb1-mediated processing and repair of TOP2-cleavable complexes is genetically separable from its ability to bind E2F and enforce DNA damage-induced cell cycle checkpoints. Rb1 protein binds both TOP2 and BRCA1 in intact cells, and pRb is required for association between TOP2 and BRCA1. These results suggest that pRb facilitates processing and repair of TOP2-cleavable complexes by recruiting proteins like BRCA1 to the damaged site. The functional status of pRb, therefore, may influence sensitivity to etoposide by facilitating the repair of trapped TOP2–DNA complexes as well as by enforcing cell cycle checkpoints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adachi N, Iiizumi S, So S and Koyama H . (2004). Biochem. Biophys. Res. Commun., 318, 856–861.

  • Adachi N, Suzuki H, Iiizumi S and Koyama H . (2003). J. Biol. Chem., 278, 35897–35902.

  • Aprelikova ON, Fang BS, Meissner EG, Cotter S, Campbell M, Kuthiala A, Bessho M, Jensen RA and Liu ET . (1999). Proc. Natl. Acad. Sci. USA, 96, 11866–11871.

  • Baer R and Ludwig T . (2002). Curr. Opin. Genet. Dev., 12, 86–91.

  • Bhat UG, Raychaudhuri P and Beck WT . (1999). Proc. Natl. Acad. Sci. USA, 96, 7859–7864.

  • Bosco EE, Mayhew CN, Hennigan RF, Sage J, Jacks T and Knudsen ES . (2004). Nucleic Acids Res., 32, 25–34.

  • Bracken AP, Ciro M, Cocito A and Helin K . (2004). Trends Biochem. Sci., 29, 409–417.

  • Brugarolas J, Moberg K, Boyd SD, Taya Y, Jacks T and Lees JA . (1999). Proc. Natl. Acad. Sci. USA, 96, 1002–1007.

  • Cam H and Dynlacht BD . (2003). Cancer Cell, 3, 311–316.

  • Chen AY and Liu LF . (1994). Ann. Rev. Pharmacol. Toxicol., 34, 191–218.

  • Cortes F, Pastor N, Mateos S and Dominguez I . (2003). Mutation Res., 543, 59–66.

  • Cortez D, Wang Y, Qin J and Elledge SJ . (1999). Science, 286, 1162–1166.

  • Doostzadeh-Cizeron J, Evans R, Yin S and Goodrich DW . (1999). Mol. Biol. Cell, 10, 3251–3261.

  • Fan S, Yuan R, Ma YX, Xiong J, Meng Q, Erdos M, Zhao JN, Goldberg ID, Pestell RG and Rosen EM . (2001). Oncogene, 20, 4827–4841.

  • Govoni M, Neri S, Labella T, Sylvester JE, Novello F and Pession A . (1995). Biochem. Biophys. Res. Commun., 213, 282–288.

  • Harbour JW . (2001). Arch. Ophthalmol, 119, 1699–1704.

  • Harbour JW, Luo RX, Dei SA, Postigo AA and Dean DC . (1999). Cell, 98, 859–869.

  • Harrington EA, Bruce JL, Harlow E and Dyson N . (1998). Proc. Natl. Acad. Sci. USA, 95, 11945–11950.

  • Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H and Ohta T . (2001). J. Biol. Chem., 276, 14537–14540.

  • Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW and Cordon-Cardo C . (2004). Nature, 430, 797–802.

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA and Weinberg RA . (1992). Nature, 359, 295–300.

  • Jasin M . (2002). Oncogene, 21, 8981–8993.

  • Knudsen KE, Booth D, Naderi S, Sever-Chroneos Z, Fribourg AF, Hunton IC, Feramisco JR, Wang JY and Knudsen ES . (2000). Mol. Cell. Biol., 20, 7751–7763.

  • Lee EY, Cam H, Ziebold U, Rayman JB, Lees JA and Dynlacht BD . (2002). Cancer Cell, 2, 463–472.

  • Li TK and Liu LF . (2001). Ann. Rev. Pharmacol. Toxicol., 41, 53–77.

  • Liu LF . (1989). Ann. Rev. Biochem., 58, 351–375.

  • Mao Y, Desai SD, Ting CY, Hwang J and Liu LF . (2001). J. Biol. Chem., 276, 40652–40658.

  • Morris EJ and Dyson NJ . (2001). Adv. Cancer Res., 82, 1–54.

  • Motoyama N and Naka K . (2004). Curr. Opin. Genet. Dev., 14, 11–16.

  • Naderi S, Hunton IC and Wang JY . (2002). Cell Cycle, 1, 193–200.

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW . (2003). Cell, 113, 703–716.

  • Niimi A, Suka N, Harata M, Kikuchi A and Mizuno S . (2001). Chromosoma, 110, 102–114.

  • Otterson GA, Chen W, Coxon AB, Khleif SN and Kaye FJ . (1997). Proc. Natl. Acad. Sci. USA, 94, 12036–12040.

  • Otterson GA, Modi S, Nguyen K, Coxon AB and Kaye FJ . (1999). Am. J. Hum. Genet., 65, 1040–1046.

  • Ruffner H, Joazeiro CA, Hemmati D, Hunter T and Verma IM . (2001). Proc. Natl. Acad. Sci. USA, 98, 5134–5139.

  • Sellers WR, Novitch BG, Miyake S, Heith A, Otterson GA, Kaye FJ, Lassar AB and Kaelin Jr WG . (1998). Genes Dev., 12, 95–106.

  • Stevens C and La Thangue NB . (2004). DNA Repair, 3, 1071–1079.

  • Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ and Abraham RT . (2000). Genes Dev., 14, 2989–3002.

  • Tsutsui K, Tsutsui K, Sano K, Kikuchi A and Tokunaga A . (2001). J. Biol. Chem., 276, 5769–5778.

  • Venkitaraman AR . (2002). Cell, 108, 171–182.

  • Wang JC . (1996). Ann. Rev. Biochem., 65, 635–692.

  • Whitaker LL, Su H, Baskaran R, Knudsen ES and Wang JYJ . (1998). Mol. Cell. Biol., 18, 4032–4042.

  • Woessner RD, Mattern MR, Mirabelli CK, Johnson RK and Drake FH . (1991). Cell Growth Differ., 2, 209–214.

  • Xia Y, Pao GM, Chen HW, Verma IM and Hunter T . (2003). J. Biol. Chem., 278, 5255–5263.

  • Xiao H, Mao Y, Desai SD, Zhou N, Ting CY, Hwang J and Liu LF . (2003). Proc. Natl. Acad. Sci. USA, 100, 3239–3244.

  • Yamamoto Y, Shimizu E, Masuda N, Takada M and Sone S . (1998). Oncol. Rep., 5, 447–451.

  • Yang X, Li W, Prescott ED, Burden SJ and Wang JC . (2000). Science, 287, 131–134.

  • Yarden RI and Brody LC . (1999). Proc. Natl. Acad. Sci. USA, 96, 4983–4988.

  • Zhong Q, Boyer TG, Chen PL and Lee WH . (2002a). Cancer Res., 62, 3966–3970.

  • Zhong Q, Chen CF, Chen PL and Lee WH . (2002b). J. Biol. Chem., 277, 28641–28647.

  • Zhou BB and Elledge SJ . (2000). Nature, 408, 433–439.

Download references

Acknowledgements

We thank Dr Leroy Liu for providing the anti-TOP2β antibodies. We acknowledge Yanjie Chang for preparing the MEFs and other members of the Goodrich lab for insightful discussions. This work was supported by NIH Grant CA70292 (DWG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W Goodrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Goodrich, D. The retinoblastoma tumor suppressor protein is required for efficient processing and repair of trapped topoisomerase II-DNA-cleavable complexes. Oncogene 24, 8105–8113 (2005). https://doi.org/10.1038/sj.onc.1208958

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208958

Keywords

This article is cited by

Search

Quick links