Skip to main content
Top

08-11-2017 | Leukemia | Article

Asparaginase Erwinia chrysanthemi effectively depletes plasma glutamine in adult patients with relapsed/refractory acute myeloid leukemia

Journal: Cancer Chemotherapy and Pharmacology

Authors: Ashkan Emadi, Jennie Y. Law, Erin T. Strovel, Rena G. Lapidus, Linda J. B. Jeng, Myounghee Lee, Miriam G. Blitzer, Brandon A. Carter-Cooper, Danielle Sewell, Isabella Van Der Merwe, Sunita Philip, Mohammad Imran, Stephen L. Yu, Hongxia Li, Philip C. Amrein, Vu H. Duong, Edward A. Sausville, Maria R. Baer, Amir T. Fathi, Zeba Singh, Søren M. Bentzen

Publisher: Springer Berlin Heidelberg

Abstract

Depletion of glutamine (Gln) has emerged as a potential therapeutic approach in the treatment of acute myeloid leukemia (AML), as neoplastic cells require Gln for synthesis of cellular components essential for survival. Asparaginases deplete Gln, and asparaginase derived from Erwinia chrysanthemi (Erwinaze) appears to have the greatest glutaminase activity of the available asparaginases. In this Phase I study, we sought to determine the dose of Erwinaze that safely and effectively depletes plasma Gln levels to ≤ 120 μmol/L in patients with relapsed or refractory (R/R) AML. Five patients were enrolled before the study was halted due to issues with Erwinaze manufacturing supply. All patients received Erwinaze at a dose of 25,000 IU/m2 intravenously three times weekly for 2 weeks. Median trough plasma Gln level at 48 h after initial Erwinaze administration was 27.6 μmol/L, and 80% (lower limit of 1-sided 95% CI 34%) of patients achieved at least one undetectable plasma Gln value (< 12.5 μmol/L), with the fold reduction (FR) in Gln level at 3 days, relative to baseline, being 0.16 (p < 0.001 for rejecting FR = 1). No dose-limiting toxicities were identified. Two patients responded, one achieved partial remission and one achieved hematologic improvement after six doses of Erwinaze monotherapy. These data suggest asparaginase-induced Gln depletion may have an important role in the management of patients with AML, and support more pharmacologic and clinical studies on the mechanistically designed asparaginase combinations in AML.
Literature
1.
Buchner T, Schlenk RF, Schaich M, Dohner K, Krahl R, Krauter J, Heil G, Krug U, Sauerland MC, Heinecke A, Spath D, Kramer M, Scholl S, Berdel WE, Hiddemann W, Hoelzer D, Hehlmann R, Hasford J, Hoffmann VS, Dohner H, Ehninger G, Ganser A, Niederwieser DW, Pfirrmann M (2012) Acute myeloid leukemia (AML): different treatment strategies versus a common standard arm—combined prospective analysis by the German AML intergroup. J Clin Oncol 30(29):3604–3610. doi:10.​1200/​JCO.​2012.​42.​2907 CrossRefPubMed
2.
Estey E, Levine RL, Lowenberg B (2015) Current challenges in clinical development of “targeted therapies”: the case of acute myeloid leukemia. Blood 125(16):2461–2466. doi:10.​1182/​blood-2015-01-561373 CrossRefPubMed
3.
Willems L, Jacque N, Jacquel A, Neveux N, Maciel TT, Lambert M, Schmitt A, Poulain L, Green AS, Uzunov M, Kosmider O, Radford-Weiss I, Moura IC, Auberger P, Ifrah N, Bardet V, Chapuis N, Lacombe C, Mayeux P, Tamburini J, Bouscary D (2013) Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 122(20):3521–3532. doi:10.​1182/​blood-2013-03-493163 CrossRefPubMedPubMedCentral
4.
Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L, Saland E, Decroocq J, Maciel TT, Lambert M, Poulain L, Hospital MA, Sujobert P, Joseph L, Chapuis N, Lacombe C, Moura IC, Demo S, Sarry JE, Recher C, Mayeux P, Tamburini J, Bouscary D (2015) Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood 126(11):1346–1356. doi:10.​1182/​blood-2015-01-621870 CrossRefPubMedPubMedCentral
5.
Emadi A, Zokaee H, Sausville EA (2014) Asparaginase in the treatment of non-ALL hematologic malignancies. Cancer Chemother Pharmacol 73(5):875–883. doi:10.​1007/​s00280-014-2402-3 CrossRefPubMed
6.
Avramis VI (2011) Asparaginases: a successful class of drugs against leukemias and lymphomas. J Pediatr Hematol Oncol 33(8):573–579. doi:10.​1097/​MPH.​0b013e31823313be​ CrossRefPubMed
7.
Capizzi RL, Davis R, Powell B, Cuttner J, Ellison RR, Cooper MR, Dillman R, Major WB, Dupre E, McIntyre OR (1988) Synergy between high-dose cytarabine and asparaginase in the treatment of adults with refractory and relapsed acute myelogenous leukemia—a Cancer and Leukemia Group B Study. J Clin Oncol 6(3):499–508CrossRefPubMed
8.
Ahmed T, Holwerda S, Klepin HD, Isom S, Ellis LR, Lyerly S, Manuel M, Dralle S, Berenzon D, Powell BL, Pardee TS (2015) High dose cytarabine, mitoxantrone and l-asparaginase (HAMA) salvage for relapsed or refractory acute myeloid leukemia (AML) in the elderly. Leuk Res 39(9):945–949. doi:10.​1016/​j.​leukres.​2015.​05.​010 CrossRefPubMedPubMedCentral
9.
Emadi A, Bade NA, Stevenson B, Singh Z (2016) Minimally-myelosuppressive asparaginase-containing induction regimen for treatment of a Jehovah’s witness with mutant IDH1/NPM1/NRAS acute myeloid leukemia. Pharmaceuticals (Basel). doi:10.​3390/​ph9010012
10.
Jarrar M, Gaynon PS, Periclou AP, Fu C, Harris RE, Stram D, Altman A, Bostrom B, Breneman J, Steele D, Trigg M, Zipf T, Avramis VI (2006) Asparagine depletion after pegylated E. coli asparaginase treatment and induction outcome in children with acute lymphoblastic leukemia in first bone marrow relapse: a Children’s Oncology Group study (CCG-1941). Pediatr Blood Cancer 47(2):141–146. doi:10.​1002/​pbc.​20713 CrossRefPubMed
11.
Panosyan EH, Grigoryan RS, Avramis IA, Seibel NL, Gaynon PS, Siegel SE, Fingert HJ, Avramis VI (2004) Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961). Anticancer Res 24(2C):1121–1125PubMed
12.
Fathi AT, Sadrzadeh H, Borger DR, Ballen KK, Amrein PC, Attar EC, Foster J, Burke M, Lopez HU, Matulis CR, Edmonds KM, Iafrate AJ, Straley KS, Yen KE, Agresta S, Schenkein DP, Hill C, Emadi A, Neuberg DS, Stone RM, Chen YB (2012) Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response. Blood 120(23):4649–4652. doi:10.​1182/​blood-2012-06-438267 CrossRefPubMed
13.
Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV (2014) Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol 42(4):247–251. doi:10.​1016/​j.​exphem.​2013.​12.​001 CrossRefPubMed
14.
Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101(10):708–720. doi:10.​1093/​jnci/​djp079 CrossRefPubMedPubMedCentral
15.
Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, Lo-Coco F, Willemze R, Biondi A, Hiddemann W, Larson RA, Lowenberg B, Sanz MA, Head DR, Ohno R, Bloomfield CD, International Working Group for Diagnosis SoRCTO, Reporting Standards for Therapeutic Trials in Acute Myeloid L (2003) Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21 (24):4642–4649. doi:10.​1200/​JCO.​2003.​04.​036 CrossRefPubMed
16.
Fathi AT, Wander SA, Faramand R, Emadi A (2015) Biochemical, epigenetic, and metabolic approaches to target IDH mutations in acute myeloid leukemia. Semin Hematol 52(3):165–171. doi:10.​1053/​j.​seminhematol.​2015.​03.​002 CrossRefPubMed
17.
Thomas X, Le Jeune C (2017) Treatment of elderly patients with acute myeloid leukemia. Curr Treatm Opt Oncol 18(1):2. doi:10.​1007/​s11864-017-0445-5 CrossRef
18.
Sekeres MA, Steensma DP (2012) Boulevard of broken dreams: drug approval for older adults with acute myeloid leukemia. J Clin Oncol 30(33):4061–4063. doi:10.​1200/​JCO.​2012.​44.​2962 CrossRefPubMed