Skip to main content

Advertisement

Log in

Treatment of Elderly Patients With Acute Myeloid Leukemia

  • Leukemia (PH Wiernik, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

There is no standard of care for older patients with acute myeloid leukemia (AML) unfit for intensive chemotherapy. AML in older patients remains an area of significant unmet need necessitating novel therapeutic strategies. In older patients with normal cytogenetics, molecular variables can be helpful in refining risk. This molecular revolution has promoted a shift in the treatment paradigm of AML. Open new questions concern the necessity of an individualized therapy that may take into account not only an increase in survival but also the maintenance or improvement in terms of quality of life, the management of symptoms, and a maximization of time outside of hospital care. Molecular abnormalities provide the genomic footprint for the development of targeted therapies. Clinical trials testing the activity of these new agents are ongoing and may reshape treatment strategies for these patients. One promising strategy is to combine low-intensity treatments with novel agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.

    Article  PubMed  CAS  Google Scholar 

  2. Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98(5):1312–20.

    Article  CAS  PubMed  Google Scholar 

  3. Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood. 2006;107(9):3481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Löwenberg B, Zittoun R, Kerkhofs H, et al. On the value of intensive remission-induction chemotherapy in elderly patients of 65+ years with acute myeloid leukemia: a randomized phase III study of the European Organization for Research and Treatment of Cancer Leukemia Group. J Clin Oncol. 1989;7(9):1268–74.

    Article  PubMed  Google Scholar 

  5. Kantarjian H, O’Brien S, Cortes J, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006;106(5):1090–8.

    Article  PubMed  Google Scholar 

  6. Rowe JM, Neuberg D, Freidenberg W, et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group. Blood. 2004;103(2):96–105.

    Article  CAS  Google Scholar 

  7. Anderson JE, Kopecky KJ, Willman CL, et al. Outcome after induction chemotherapy for older patients with acute myeloid leukemia is not improved with mitoxantrone and etoposide compared to cytarabine and daunorubicin. A Southwest Oncology Group study Blood. 2002;100(12):3869–76.

    CAS  Google Scholar 

  8. Gardin C, Turlure P, Fagot T, et al. Postremission treatment of elderly patients with acute myeloid leukemia in first complete remission after intensive induction chemotherapy: results of the multicenter randomized Acute Leukemia French Association (ALFA) 9803 trial. Blood. 2007;109(12):5129–35.

    Article  CAS  PubMed  Google Scholar 

  9. Stone RM, Berg DT, George SL, et al. Postremission therapy in older patients with de novo acute myeloid leukemia: a randomized trial comparing mitoxantrone and intermediate-dose cytarabine with standard-dose cytarabine. Blood. 2001;98:548–53.

    Article  CAS  PubMed  Google Scholar 

  10. Storb R, Sandmaier BM. Nonmyeloablative allogeneic hematopoietic cell transplantation. Haematologica. 2016;101:521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alibhai SM, Leach M, Minden MD, Brandwein J. Outcomes and quality of care in acute myeloid leukemia over 40 years. Cancer. 2009;115(13):2903–11.

    Article  PubMed  Google Scholar 

  12. Menzin J, Lang K, Earle CC, et al. The outcomes and costs of acute myeloid leukemia among the elderly. Arch Intern Med. 2002;162(14):1597–603.

    Article  PubMed  Google Scholar 

  13. • Juliusson G, Antunovic P, Derolf A, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009;113(18):4179–87. Summarizes data from a National registry regarding AML in the elderly

    Article  CAS  PubMed  Google Scholar 

  14. Othus M, Kantarjian H, Petersdorf S, et al. Declining rates of treatment-related mortality in patients with newly diagnosed AML given ‘intense’ induction regimens: a report from SWOG and MD Anderson. Leukemia. 2014;28(2):289–92.

    Article  CAS  PubMed  Google Scholar 

  15. Fattoum J, Cannas G, Elhamri M, et al. Effect of age on treatment decision-making in elderly patients with acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(8):477–83.

    Article  PubMed  Google Scholar 

  16. Alibhai SM, Leach M, Kermalli H, et al. The impact of acute myeloid leukemia and its treatment on quality of life and functional status in older adults. Crit Rev Oncol Hematol. 2007;64(1):19–30.

    Article  PubMed  Google Scholar 

  17. Rollig C, Thiede C, Gramatzki M, et al. A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116(6):971–8.

    Article  PubMed  CAS  Google Scholar 

  18. Wheatley K, Brookes CL, Howman AJ, et al. Prognostic factor analysis of the survival of elderly patients with AML in the MRC AML11 and LRF AML14 trials. Br J Haematol. 2009;145(5):598–605.

    Article  PubMed  Google Scholar 

  19. Giles FJ, Borthakur G, Ravandi F, et al. The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. Br J Haematol. 2007;136(4):624–7.

    Article  PubMed  Google Scholar 

  20. Lazenby M, Gilkes AF, Marrin C, et al. The prognostic relevance of flt3 and npm1 mutations on older patients treated intensively or non-intensively: a study of 1312 patients in the UK NCRI AML 16 trial. Leukemia. 2014;28(10):1953–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rothenberg-Thurley M, Amier S, Goerlich D, et al. Persistence of driver mutations during complete remission associates with shorter survival and contributes to the inferior outcomes of elderly patients with acute myeloid leukemia. Haematologica. 2016;101(S1):23.

    Google Scholar 

  22. Extermann M, Hurria A. Comprehensive geriatric assessment for older patients with cancer. J Clin Oncol. 2007;25(14):1824–31.

    Article  PubMed  Google Scholar 

  23. Hamaker ME, Mitrovic M, Stauder R. The G8 screening tool detects relevant geriatric impairments and predicts survival in elderly patients with a haematological malignancy. Ann Hematol. 2014;93(6):1031–40.

    Article  CAS  PubMed  Google Scholar 

  24. •• Klepin HD. Geriatric perspective: how to assess fitness for chemotherapy in acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2014;2014(1):8–13. One important review about geriatric assessment in elderly patients with AML

    PubMed  Google Scholar 

  25. • Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. Current international recommendations for the management of AML

    Article  PubMed  CAS  Google Scholar 

  26. Borlenghi E, Pagani C, Basilico C, et al. Validating the patient’s “fitness” criteria proposed to guide treatment decision in elderly AML: a multicenter study on a series of 699 patients by the network ″Rete Ematologica Lombarda″. Haematologica. 2016;101(S1):376.

    Google Scholar 

  27. Deschler B, Ihorst G, Platzbecker U, et al. Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome. Haematologica. 2013;98(2):208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bron D, Soubeyran P, Fulop T, on behalf of the SWG “Aging and Hematology” of the EHA. Innovative approach to older patients with malignant hemopathies. Haematologica. 2016;101(8):893–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Collerton J, Martin-Ruiz C, Davies K, et al. Frailty and the role of inflammation, immunosenescence and cellular aging in the very old: cross-sectional findings from the Newcastle 85+ study. Mech Age Dev. 2012;133(6):456–66.

    Article  CAS  Google Scholar 

  30. Nelson JA, Krishnamurthy J, Menezes P, et al. Expression of p16(INK4a) as a biomarker of T-cell aging in HIV-infected patients prior to and during antiretroviral therapy. Aging Cell. 2012;11(5):916–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gore SD, Baylin S, Sugar E, et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 2006;66(12):6361–9.

    Article  CAS  PubMed  Google Scholar 

  32. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40.

    Article  CAS  PubMed  Google Scholar 

  33. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28(4):562–9.

    Article  CAS  PubMed  Google Scholar 

  34. • Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9. A pivotal trial of azacitidine in older patients with newly diagnosed AML

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pollyea DA, Zehnder J, Coutre S, et al. Sequential azacitidine plus lenalidomide combination for elderly patients with untreated acute myeloid leukemia. Haematologica. 2013;98(4):591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daver N, Cortes J, Ravandi F, et al. Phase IB/II study of nivolumab in combination with 5-azacytidine (AZA) in patients (pts) with relapsed acute myeloid leukemia (AML). Haematologica. 2016;101(S1):42–3.

    Google Scholar 

  37. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.

    Article  CAS  PubMed  Google Scholar 

  38. • Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30(21):2670–7. A pivotal trial of decitabine in older patients with newly diagnosed AML

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blum W, Garzon R, Klisovic RB, et al. Clinical response and miR-29b predictive significance in older AML patients treated with 10-day schedule of decitabine. Proc Natl Acad Sci U S A. 2010;107(16):7473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blum W, Schwind S, Tarigat SS, et al. Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood. 2012;119(25):6025–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenblat T, Heaney M, Jurcic J, et al. A phase I trial of a pharmacodynamically-conceived decitabine and thioguanine combination in patients with advanced myeloid malignancies. Haematologica. 2016;101(S1):44.

    Google Scholar 

  42. Seymour JF, Döhner H, Butrym A, et al. Azacitidine versus conventional care regimens in older patients with newly doiagnosed acute myeloid leukemia with morphologic dysplastic changes: a subgroup analysis of the AZA-AML-001 trial. Blood. 2014;124(21):10.

    Google Scholar 

  43. Metzeler KH, Walker A, Geyer S, et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. 2012;26(5):1106–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25(7):1147–52.

    Article  CAS  PubMed  Google Scholar 

  46. Desoutter J, Gay J, Berthon C, et al. Molecular prognostic factors in acute myeloid leukemia receiving first-line therapy with azacitidine. Leukemia. 2016;30(6):1416–8.

    Article  CAS  PubMed  Google Scholar 

  47. Issa JP, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomized, dose-escalation phase1 study. Lancet Oncol. 2015;16(9):1099–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. • Kantarjian H, Jabbour E, Yee K, et al. First clinical results of a randomized phase 2 study of SGI-110, a novel subcutaneous (SQ) hypomethylating agent (HMA), in adult patients with acute myeloid leukemia (AML). Blood. 2013;122(21):497. A pivotal trial of SGI-110 in adult patients with AML

    Google Scholar 

  49. Griffiths EA, Kantarjian HM, Roboz GJ, et al. First results of a phase 2 study using a 10-day subcutaneous (SC) regimen of the novel hypomethylating agent (HMA) SGI-110 for the treatment of relapsed/refractory acute myeloid leukemia (r/r AML). J Clin Oncol. 2014;32(Suppl):7030.

    Google Scholar 

  50. Bonate PL, Artaud L, Cantrell Jr WR, et al. Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov. 2006;5(10):855–63.

    Article  CAS  PubMed  Google Scholar 

  51. • Burnett AK, Russell NH, Hunter AE, et al. Clofarabine doubles the response rate in older patients with acute myeloid leukemia but does not improve survival. Blood. 2013;122(8):1384–94. An important study showing a benefit for clofarabine in elderly patients with AML

    Article  CAS  PubMed  Google Scholar 

  52. Faderl S, Ravandi F, Huang X, et al. A randomized study of clofarabine versus clofarabine plus low-dose cytarabine as front-line therapy for patients aged 60 years and older with acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood. 2008;112(5):1638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim MY, Jamieson K. Profile of sapacitabine: potential for the treatment of newly diagnosed acute myeloid leukemia in elderly patients. Clin Interv Aging. 2014;9:753–62.

    PubMed  PubMed Central  Google Scholar 

  54. • Kantarjian H, Faderl S, Garcia-Manero G, et al. Oral sapacitabine for the treatment of acute myeloid leukaemia in elderly patients: a randomized phase 2 study. Lancet Oncol. 2012;13(11):1096–104. A pivotal trial of sapacitabine in older patients with AML

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ravandi F, Kadia TM, Borthakur G, et al. Pooled analysis of elderly patients with newly diagnosed AML treated with sapacitabine and decitabine administered in alternating cycles. Blood. 2012;120(21):2630.

    Google Scholar 

  56. Kadia T, Cortes J, Borthakur G, et al. Phase II study of cladribine and low-dose AraC alternating with decitabine in older patients with AML. Haematologica. 2016;101(S1):42.

    Google Scholar 

  57. Lancet JE, Cortes JE, Hogge DE, et al. Phase II, multicenter, randomized, open label trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus cytarabine and daunorubicin in patients with untreated AML 60-75 years of age. Blood. 2014;123(21):3239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Freeman C, Keane N, Swords R, Giles F. Vosaroxin: a new valuable tool with the potential to replace anthracyclines in the treatment of AML? Expert Opin Pharmacother. 2013;14(10):1417–27.

    Article  CAS  PubMed  Google Scholar 

  59. Hotinski AK, Lewis ID, Ross DM. Vosaroxin is a novel topoisomerase-II inhibitor with efficacy in relapsed and refractory acute myeloid leukaemia. Expert Opin Pharmacother. 2015;16(9):1395–402.

    Article  CAS  PubMed  Google Scholar 

  60. Naval D, Kantarjian HM, Garcia-Manero G, et al. Phase I/II study of vosaroxin and decitabine in newly diagnosed older patients (pts) with acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS). Blood. 2014;124(21):385.

    Google Scholar 

  61. • Ravandi F, Ritchie EK, Sayar H, et al. Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): a randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 2015;16(9):1025–36. A pivotal trial of vosaroxin in adult patients with newly diagnosed AML

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stein EM, Altman JK, Collins R, et al. AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase I study in patients with IDH2 mutation positive advanced hematologic malignancies. Blood. 2014;124(21):115.

    Google Scholar 

  63. Schaefer EW, Loaiza-Bonilla A, Juckett M, et al. A phase 2 study of vorinostat in acute myeloid leukemia. Haematologica. 2009;94(10):1375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Walter RB, Medeiros BC, Powell BL, et al. Phase II trial of vorinostat and gemtuzumab ozogamicin as induction and post-remission therapy in older adults with previously untreated acute myeloid leukemia. Haematologica. 2012;97(5):739–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garcia-Manero G, Estey EH, Jabbour E, et al. Final report of a phase II study of 5-azacitidine and vorinostat in patients (pts) with newly diagnosed myelodysplastic syndrome (MDS) or acute myelogenous leukemia (AML) not eligible for clinical trials because poor performance and presence of other comorbidities. Blood. 2011;118(21):608.

    Google Scholar 

  66. Quintas-Cardama A, Kantarjian HM, Ravandi F, et al. Very high rates of clinical and cytogenetic response with the combination of the histone deacetylase inhibitor pracinostat (SB939) and 5-azacitidine in high-risk myelodysplastic syndrome. Blood. 2012;120(21):3821.

    Google Scholar 

  67. Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Berthon C, Raffoux E, Thomas X, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3(4):e186–95.

    Article  PubMed  Google Scholar 

  69. Zhang W, Konopleva M, Shi YX, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100(3):184–98.

    Article  CAS  PubMed  Google Scholar 

  70. Uy GL, Mandrekar S, Laumann K, et al. Addition of sorafenib to chemotherapy improves the overall survival of older adults with FLT3-ITD mutated acute myeloid leukemia (AML) (Alliance C11001). Blood. 2015;126(23):319.

    Google Scholar 

  71. Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2003;121(23):4655–62.

    Article  CAS  Google Scholar 

  72. Stone RM, Mandrekar S, Sanford BL, et al. The multi-kinase inhibitor midostaurin (M) prolongs survival compared with placebo (P) in combination with daunorubicin (D)/cytarabine (C) induction (ind), high-dose C consolidation (consol), and as maintenance (maint) therapy in newly diagnosed acute myeloid leukemia (AML) patients (pts) age 18-60 with FLT3 mutations (muts): an international prospective randomized (rand) P-controlled double-blind trial (CALGB 10603/RATIFY [Alliance]). Blood. 2015;126(23):6.

    Google Scholar 

  73. Cortes JE, Kantarjian H, Foran JM, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol. 2013;31(29):3681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cortes J, Perl A, Dombret H, et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood. 2012;120(21):48.

    Google Scholar 

  75. Levis MJ, Perl AE, Dombret H, et al. Final results of a phase 2 open-label, monotherapy, efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second line chemotherapy or hematopoietic stem cell transplantation. Blood. 2012;120(21):673.

    Google Scholar 

  76. Smith CC, Lasater EA, Lin KC, et al. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc Natl Acad Sci U S A. 2014;111(14):5319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Randhawa JK, Kantarjian HM, Borthakur G, et al. Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with activating FLT3 mutations. Blood. 2014;124(21):389.

    Google Scholar 

  78. Canaani J, Rea B, Sargent R, et al. Differentiation response to gilteritinib (ASP2215) in relapsed/refractory FLT3 mutated acute myeloid leukemia patients is associated with co-mutations in NPM1 and DNMT3A. Haematologica. 2016;101(S1):42.

    Google Scholar 

  79. Knapper S, Grech A, Cahalin P, et al. An evaluation of the tyrosine kinase inhibitor pacritinib in patients with relapsed FLT3-mutated acute myeloid leukaemia (the UK NCRI AML17 study). Haematologica. 2016;101(S1):40.

    Google Scholar 

  80. Kantarjian HM, Martinelli G, Jabbour EJ, et al. Stage I of a phase 2 study assessing the efficacy, safety, and tolerability of barasertib (AZD1152) versus low-dose cytosine arabinoside in elderly patients with acute myeloid leukemia. Cancer. 2013;119(14):2611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kantarjian HM, Sekeres MA, Ribrag V, et al. Phase I study assessing the safety and tolerability of barasertib (AZD1152) with low-dose cytosine arabinoside in elderly patients with AML. Clin Lymphoma Myeloma Leuk. 2013;13(5):559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Döhner H, Lübbert M, Fiedler W, et al. Randomized, phase 2 trial comparing low-dose cytarabine with or without volasertib in AML patients not suitable for intensive induction therapy. Blood. 2014;124(9):1426–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bajwa N, Liao C, Nikolovska-Coleska Z. Inhibitors of the anti-apoptotic Bcl-2 proteins: a patient review. Expert Opin Ther Pat. 2012;22(1):37–55.

    Article  CAS  PubMed  Google Scholar 

  84. Cang S, Iragavarapu C, Savooji J, et al. ABT-199 (venetoclax) and Bcl-2 inhibitors in clinical development. J Hematol Oncol. 2015;8:129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Cole A, Wang Z, Mattson R. The mitochondrial ClpP as a novel therapeutic strategy for acute myeloid leukemia. Blood. 2015;126(23):3937.

    Google Scholar 

  86. Pollyea DA, Di Nardo C, Thirman M, et al. Results of a phase 1B study of venetoclax plus decitabine or azacitidine in untreated acute myeloid leukemia patients ≥65 years ineligible for standard induction therapy. Haematologica. 2016;101(S1):44.

    Google Scholar 

  87. Lin TL, Strickland S, Fiedler W, et al. Phase 1B/2 study of venetoclax with low-dose cytarabine in treatment-naïve patients aged ≥65 years with acute myelogenous leukemia. Haematologica. 2016;101(S1):374.

    Google Scholar 

  88. Daigle SR, Olhava EJ, Therkelsen CA, et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011;20(1):53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Klaus CR, Iwanowicz D, Johnson D, et al. DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells. J Pharmacol Exp Ther. 2014;350(3):646–56.

    Article  PubMed  CAS  Google Scholar 

  90. Rau RE, Rodriguez BA, Luo M, et al. DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood. 2016;128(7):971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stein EM, Garcia-Manero G, Rizzieri DA, et al. The DOT1L inhibitor EPZ-5676: safety and activity in relapsed/refractory patients with MLL-rearranged leukemia. Blood. 2014;124(21):387.

    Google Scholar 

  92. Van der Velden V, te Marvelde JG, Hoogeveen PG, et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood. 2001;97(10):3197–204.

    Article  CAS  PubMed  Google Scholar 

  93. Castaigne S, Pautas C, Terré C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.

    Article  CAS  PubMed  Google Scholar 

  94. Amadori S, Suciu S, Selleslag D, et al. Randomized trial of two schedules of low-dose gemtuzumabozogamicin as induction monotherapy for newly diagnosed acute myeloid leukaemia in older patients not considered candidates for intensive chemotherapy. A phase II study of the EORTC and GIMEMA leukaemia groups (AML-19). Br J Haematol. 2010;149(3):376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31.

    Article  CAS  PubMed  Google Scholar 

  96. Burnett AK, Hills RK, Hunter AE, et al. The addition of gemtuzumab ozogamicin to low-dose AraC improves remission rate but does not significantly prolong survival in older patients with acute myeloid leukaemia: results from the LRF AML14 and NCRI AML16 pick-a-winner comparison. Leukemia. 2013;27(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  97. Daver N, Kantarjian H, Ravandi F, et al. A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high-risk myelodysplastic syndrome. Leukemia. 2016;30(2):268–73.

    Article  CAS  PubMed  Google Scholar 

  98. Nand S, Othus M, Godwin JE, et al. A phase 2 trial of azacitidine and gemtuzumabozogamicin therapy in older patients with acute myeloid leukemia. Blood. 2013;122(20):3432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Löwenberg B, Beck J, Graux C, et al. Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more/ results of a multicenter phase 3 study. Blood. 2010;115(13):2586–91.

    Article  PubMed  CAS  Google Scholar 

  100. • Stein EM, Stein A, Walter RB, et al. Interim analysis of a phase 1 trial of SGN-CD33A in patients with CD33-positive acute myeloid leukemia (AML). Blood. 2014;124(21):623. A phase 1 trial of SGN-CD33A in adult patients with AML

    Google Scholar 

  101. Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23(18):4110–6.

    Article  CAS  PubMed  Google Scholar 

  102. Vasu S, He S, Cheney C, et al. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood. 2016;127(23):2879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sutherland MK, Yu C, Anderson M, et al. 5-azacytidine enhances the anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs. 2010;2(4):440–8.

    Article  PubMed  Google Scholar 

  104. Fathi AT, Erba HP, Lancet JE, et al. SGN-CD33A plus hypomethylating agents: a novel, well-tolerated regimen with high remission rate in frontline unfit AML. Blood. 2015;126(23):454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Thomas MD, PhD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, X., Le Jeune, C. Treatment of Elderly Patients With Acute Myeloid Leukemia. Curr. Treat. Options in Oncol. 18, 2 (2017). https://doi.org/10.1007/s11864-017-0445-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0445-5

Keywords

Navigation