Skip to main content
Top

06-08-2018 | Guidelines | Article

Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy

Journal: Nature Reviews Clinical Oncology

Authors: Kris M. Mahadeo, Sajad J. Khazal, Hisham Abdel-Azim, Julie C. Fitzgerald, Agne Taraseviciute, Catherine M. Bollard, Priti Tewari, Christine Duncan, Chani Traube, David McCall, Marie E. Steiner, Ira M. Cheifetz, Leslie E. Lehmann, Rodrigo Mejia, John M. Slopis, Rajinder Bajwa, Partow Kebriaei, Paul L. Martin, Jerelyn Moffet, Jennifer McArthur, Demetrios Petropoulos, Joan O’Hanlon Curry, Sarah Featherston, Jessica Foglesong, Basirat Shoberu, Alison Gulbis, Maria E. Mireles, Lisa Hafemeister, Cathy Nguyen, Neena Kapoor, Katayoun Rezvani, Sattva S. Neelapu, Elizabeth J. Shpall, the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network

Publisher: Nature Publishing Group UK

Abstract

In 2017, an autologous chimeric antigen receptor (CAR) T cell therapy indicated for children and young adults with relapsed and/or refractory CD19+ acute lymphoblastic leukaemia became the first gene therapy to be approved in the USA. This innovative form of cellular immunotherapy has been associated with remarkable response rates but is also associated with unique and often severe toxicities, which can lead to rapid cardiorespiratory and/or neurological deterioration. Multidisciplinary medical vigilance and the requisite health-care infrastructure are imperative to ensuring optimal patient outcomes, especially as these therapies transition from research protocols to standard care. Herein, authors representing the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Hematopoietic Stem Cell Transplantation (HSCT) Subgroup and the MD Anderson Cancer Center CAR T Cell Therapy-Associated Toxicity (CARTOX) Program have collaborated to provide comprehensive consensus guidelines on the care of children receiving CAR T cell therapy.

DOI: 10.1038/s41571-018-0075-2

Literature
  1. Noone, A. M. et al. SEER Cancer Statistics Review, 1975–2015. National Cancer Institute https://​seer.​cancer.​gov/​csr/​1975_​2015/​ (2018).
  2. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).PubMedView Article
  3. O’Leary, M., Krailo, M., Anderson, J. R. Reaman, G. H., & Children’s Oncology Group. Progress in childhood cancer: 50 years of research collaboration, a report from the Children’s Oncology Group. Semin. Oncol. 35, 484–493 (2008).PubMedPubMed CentralView Article
  4. Blau, C. A. E. Donnall Thomas, M.D. (1920–2012). Stem Cells Transl Med. (2013).
  5. Ko, R. H. et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J. Clin. Oncol. 28, 648–654 (2010).PubMedView Article
  6. Sun, W. et al. Outcome of children with multiply relapsed B cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia and lymphoma study. Leukemia https://​doi.​org/​10.​1038/​s41375-018-0094-0 (2018).
  7. Thomas, E. D. et al. Marrow transplantation for patients with acute lymphoblastic leukemia in remission. Blood 54, 468–476 (1979).PubMedView Article
  8. Novartis Pharmaceuticals Corporation. Package insert - KymriahTM (tisagenlecleucel). Novartis Pharmaceuticals Corporation https://​www.​fda.​gov/​downloads/​BiologicsBloodVa​ccines/​CellularGeneTher​apyProducts/​ApprovedProducts​/​UCM573941.​pdf (2018).
  9. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).PubMedPubMed CentralView Article
  10. Dai, H., Wang, Y., Lu, X. & Han, W. Chimeric antigen receptors modified T-cells for cancer therapy. J. Natl Cancer Inst. 108, djv439 (2016).PubMedPubMed CentralView Article
  11. Kebriaei, P. et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Invest. 126, 3363–3376 (2016).PubMedPubMed CentralView Article
  12. Abate-Daga, D. & Davila, M. L. CAR models: next-generation CAR modifications for enhanced T cell function. Mol. Ther. Oncolyt. 3, 16014 (2016).View Article
  13. Maus, M. V. & Levine, B. L. Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist 21, 608–617 (2016).PubMedPubMed CentralView Article
  14. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).PubMedPubMed CentralView Article
  15. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).PubMedPubMed CentralView Article
  16. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).PubMedPubMed CentralView Article
  17. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl Med. 5, 177ra138 (2013).View Article
  18. Cruz, C. R. et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122, 2965–2973 (2013).PubMedPubMed CentralView Article
  19. Kochenderfer, J. N. et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122, 4129–4139 (2013).PubMedPubMed CentralView Article
  20. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl Med. 6, 224ra225 (2014).View Article
  21. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B cell lymphoma and indolent B cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).PubMedView Article
  22. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).PubMedView Article
  23. Garfall, A. L. et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N. Engl. J. Med. 373, 1040–1047 (2015).PubMedPubMed CentralView Article
  24. Brudno, J. N. et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34, 1112–1121 (2016).PubMedPubMed CentralView Article
  25. Turtle, C. J. et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. 35, 3010–3020 (2017).PubMedPubMed CentralView Article
  26. Locke, F. L. et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol. Ther. 25, 285–295 (2017).PubMedPubMed CentralView Article
  27. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).PubMedPubMed CentralView Article
  28. Kochenderfer, J. N. et al. B cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).PubMedPubMed CentralView Article
  29. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).PubMedPubMed CentralView Article
  30. Teachey, D. T. et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121, 5154–5157 (2013).PubMedPubMed CentralView Article
  31. Rezvani, K. & Rouce, R. H. The application of natural killer cell immunotherapy for the treatment of cancer. Front. Immunol. 6, 578 (2015).PubMedPubMed CentralView Article
  32. Richman, S. A. et al. High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol. Res. 6, 36–46 (2018).
  33. Fitzgerald, J. C. et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit. Care Med. 45, e124–e131 (2017).PubMedPubMed CentralView Article
  34. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).PubMedView Article
  35. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).PubMedView ArticlePubMed Central
  36. FDA. FDA briefing document: Oncologic Drugs Advisory Committee meeting; BLA 125646; Tisagenlecleucel, Novartis Pharmaceuticals Corporation. FDA https://​www.​fda.​gov/​downloads/​AdvisoryCommitte​es/​CommitteesMeetin​gMaterials/​Drugs/​OncologicDrugsAd​visoryCommittee/​UCM566166.​pdf (2017).
  37. Neelapu, S. S. et al. Chimeric antigen receptor T cell therapy - assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).PubMedView Article
  38. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).PubMedPubMed CentralView Article
  39. Fink, A., Kosecoff, J., Chassin, M. & Brook, R. H. Consensus methods: characteristics and guidelines for use. Am. J. Publ. Health 74, 979–983 (1984).View Article
  40. Shekelle, P. G., Woolf, S. H., Eccles, M. & Grimshaw, J. Developing clinical guidelines. West J. Med. 170, 348–351 (1999).PubMedPubMed Central
  41. Shields, A. F. et al. Immune modulation therapy and imaging: workshop report. J. Nucl. Med. 59, 410–417 (2018).PubMedPubMed CentralView Article
  42. Massad, N., Lee, S. C., Lasala, P. A. & Welch, M. R. A case of pembrolizumab-induced central nervous system toxicity in a patient with metastatic melanoma. Am. Acad. Neurol. 86, (Suppl. 16), P4.238 (2016).
  43. Hochmair, M. J., Schwab, S., Burghuber, O. C., Krenbek, D. & Prosch, H. Symptomatic pseudo-progression followed by significant treatment response in two lung cancer patients treated with immunotherapy. Lung Cancer 113, 4–6 (2017).PubMedView Article
  44. [No authors listed.] Informed consent, parental permission, and assent in pediatric practice. Committee on Bioethics, American Academy of Pediatrics. Pediatrics 95, 314–317 (1995).
  45. McGuirk, J. et al. Building blocks for institutional preparation of CTL019 delivery. Cytotherapy 19, 1015–1024 (2017).PubMedView Article
  46. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).PubMedPubMed CentralView Article
  47. Crookston, K. P. & Simon, T. L. in Apheresis: Principles and Practice 2nd edn (eds McLeod, B. C., Price, T. H. & Weinstein, R.) 71–90 (AABB Press, Bethesda, 2003).
  48. Goldstein, S. L. Therapeutic apheresis in children: special considerations. Semin. Dial 25, 165–170 (2012).PubMedView Article
  49. US National Library of Medicine. ClinicalTrials.gov https://​clinicaltrials.​gov/​ct2/​show/​NCT02028455 (2018).
  50. Michon, B. et al. Complications of apheresis in children. Transfusion 47, 1837–1842 (2007).PubMedView Article
  51. Gorlin, J. B. et al. Pediatric large volume peripheral blood progenitor cell collections from patients under 25 kg: a primer. J. Clin. Apheresis 11, 195–203 (1996).PubMedView Article
  52. Carausu, L., Clapisson, G., Philip, I., Sebban, H. & Marec-Berard, P. Use of totally implantable catheter for peripheral blood stem cell apheresis. Bone Marrow Transpl. 39, S131–S131 (2007).
  53. Koristek, Z., Sterba, J., Havranova, D. & Mayer, J. Technique for PBSC harvesting in children of weight under 10 kg. Bone Marrow Transpl. 29, 57–61 (2002).View Article
  54. Ohara, Y. et al. Comprehensive technical and patient-care optimization in the management of pediatric apheresis for peripheral blood stem cell harvesting. Transfus Apher Sci. 55, 338–343 (2016).PubMedView Article
  55. Foundation for the Accreditation of Cellular Therapy. FACT Standards for Immune Effector Cells. 1st edn (FACT, 2017).
  56. Wells, J. et al. Pre-clinical activity of allogeneic anti-CD22 CAR-T cells for the treatment of B-cell acute lymphoblastic leukemia. Blood 130, 808 (2017).View Article
  57. US National Library of Medicine. ClinicalTrials.gov https://​clinicaltrials.​gov/​ct2/​show/​NCT03056339 (2018).
  58. US National Library of Medicine. ClinicalTrials.gov https://​clinicaltrials.​gov/​ct2/​show/​NCT02808442 (2018).
  59. Rezvani, K., Rouce, R., Liu, E. & Shpall, E. Engineering natural killer cells for cancer immunotherapy. Mol. Ther. 25, 1769–1781 (2017).PubMedPubMed CentralView Article
  60. Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2017).PubMedPubMed CentralView Article
  61. Philip, B. RQR8: A universal safety switch for cellular therapies. Thesis, Univ. College London (2015).
  62. Maude, S. L., Barrett, D., Teachey, D. T. & Grupp, S. A. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 20, 119–122 (2014).PubMedPubMed CentralView Article
  63. Tomblyn, M. et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol. Blood Marrow Transplant 15, 1143–1238 (2009).PubMedPubMed CentralView Article
  64. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4(+): CD8(+) composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).PubMedPubMed CentralView Article
  65. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).PubMedView Article
  66. Dummer, W. et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 110, 185–192 (2002).PubMedPubMed CentralView Article
  67. Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 26, 111–117 (2005).PubMedPubMed CentralView Article
  68. Mackall, C. L., Hakim, F. T. & Gress, R. E. Restoration of T cell homeostasis after T cell depletion. Semin. Immunol. 9, 339–346 (1997).PubMedView Article
  69. Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).PubMedView Article
  70. Goldrath, A. W. & Bevan, M. J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).PubMedPubMed CentralView Article
  71. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).PubMedPubMed CentralView Article
  72. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).PubMedView Article
  73. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).PubMedView ArticlePubMed Central
  74. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).PubMed
  75. Colombo, M. P. & Piconese, S. Regulatory-T cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat. Rev. Cancer 7, 880–887 (2007).PubMedView Article
  76. Wrzesinski, C. et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J. Immunother. 33, 1–7 (2010).PubMedPubMed CentralView Article
  77. Gattinoni, L., Powell, D. J. Jr., Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383–393 (2006).PubMedPubMed CentralView Article
  78. Cameron, J. et al. Addition of fludarabine to cyclophosphamide lymphodepletion improves in vivo expansion of CD19 chimeric antigen receptor-modified T cells and clinical outcome in adults with B cell acute lymphoblastic leukemia. Blood 126, 3773 (2015).View Article
  79. Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).PubMedPubMed CentralView Article
  80. Shank, B. R. et al. Chimeric antigen receptor T cells in hematologic malignancies. Pharmacotherapy 37, 334–345 (2017).PubMedView Article
  81. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B cell leukemias. Blood 118, 4817–4828 (2011).PubMedPubMed CentralView Article
  82. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).PubMedPubMed CentralView Article
  83. US National Library of Medicine. ClinicalTrials.gov https://​clinicaltrials.​gov/​ct2/​show/​NCT02203825 (2018).
  84. Leukemia & Lymphoma Society. Chimeric antigen receptor (CAR) T-cell therapy. Leukemia & Lymphoma Society https://​www.​lls.​org/​sites/​default/​files/​National/​USA/​Pdf/​Publications/​FSHP1_​CART_​Factsheet_​June2018_​FINAL.​pdf (2017).
  85. Brentjens, R., Yeh, R., Bernal, Y., Riviere, I. & Sadelain, M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol. Ther. 18, 666–668 (2010).PubMedPubMed CentralView Article
  86. Truong, T. H. et al. Adverse reactions during stem cell infusion in children treated with autologous and allogeneic stem cell transplantation. Bone Marrow Transplant 51, 680–686 (2016).PubMedView Article
  87. Davis, J. M., Rowley, S. D., Braine, H. G., Piantadosi, S. & Santos, G. W. Clinical toxicity of cryopreserved bone marrow graft infusion. Blood 75, 781–786 (1990).PubMedView Article
  88. Stroncek, D. F. et al. Adverse reactions in patients transfused with cryopreserved marrow. Transfusion 31, 521–526 (1991).PubMedView Article
  89. Zambelli, A. et al. Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res. 18, 4705–4708 (1998).PubMed
  90. Zenhausern, R., Tobler, A., Leoncini, L., Hess, O. M. & Ferrari, P. Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann. Hematol. 79, 523–526 (2000).PubMedView Article
  91. Hoyt, R., Szer, J. & Grigg, A. Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplant 25, 1285–1287 (2000).PubMedView Article
  92. Otrock, Z. K. et al. Transient global amnesia associated with the infusion of DMSO-cryopreserved autologous peripheral blood stem cells. Haematologica 93, e36–e37 (2008).PubMedView Article
  93. Miniero, R., Vai, S., Giacchino, M., Giubellino, C. & Madon, E. Severe respiratory depression after autologous bone marrow infusion. Haematologica 77, 98–99 (1992).PubMed
  94. Shu, Z., Heimfeld, S. & Gao, D. Hematopoietic stem cell transplantation with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal prior to infusion. Bone Marrow Transpl. 49, 469–476 (2014).View Article
  95. Breslin, S. Cytokine-release syndrome: overview and nursing implications. Clin. J. Oncol. Nurs. 11, 37–42 (2007).PubMedView Article
  96. Namuduri, M. & Brentjens, R. J. Medical management of side effects related to CAR T cell therapy in hematologic malignancies. Expert Rev. Hematol. 9, 511–513 (2016).PubMedPubMed CentralView Article
  97. Buechner, J. et al. Global registration trial of efficacy and safety of CTL019 in pediatric and young adult patients with relapsed/refractory (r/r) acute lymphoblastic leukemia (ALL): update to the interim analysis. Clin. Lymphoma Myeloma Leuk. 17, S263–S264 (2017).View Article
  98. Power, N. & Franck, L. Parent participation in the care of hospitalized children: a systematic review. J. Adv. Nurs. 62, 622–641 (2008).PubMedView Article
  99. U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) v5.0. U.S. Department of Health and Human Services. https://​ctep.​cancer.​gov/​protocoldevelopm​ent/​electronic_​applications/​docs/​CTCAE_​v5_​Quick_​Reference_​5x7.​pdf (2017).
  100. Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 16, 428–439 (2015).View Article
  101. Rowan, C. M. et al. Pediatric acute respiratory distress syndrome in pediatric allogeneic hematopoietic stem cell transplants: a multicenter study. Pediatr. Crit. Care Med. 18, 304–309 (2017).PubMedView Article
  102. Rowan, C. M. et al. High-frequency oscillatory ventilation use and severe pediatric ARDS in the pediatric hematopoietic cell transplant recipient. Respir. Care 63, 404–411 (2017).PubMedView Article
  103. Chong, S. L. et al. A retrospective review of vital signs and clinical outcomes of febrile infants younger than 3 months old presenting to the emergency department. PLOS One 13, e0190649 (2018).PubMedPubMed CentralView Article
  104. Fleming, S. et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 377, 1011–1018 (2011).PubMedPubMed CentralView Article
  105. Akcan-Arikan, A. et al. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 71, 1028–1035 (2007).PubMedView Article
  106. Kidney Disease Improving Global Outcomes. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2, 1–138 (2012).View Article
  107. Neelapu, S. S. et al. Axicabtagene ciloleucel (AXI-CEL; KTE-C19) in patients with refractory aggressive non-hodgkin lymphomas (NHL): primary results of the pivotal trial ZUMA-1. Hematol.Oncol. 35 (Suppl.), 28 (2017).View Article
  108. Thudium Mueller, K. et al. CTL019 clinical pharmacology and biopharmaceutics in pediatric patients (pts) with relapsed or refractory (r/r) acute lymphoblastic leukemia (ALL) [abstract ALL-146]. Clin. Lymphoma Myeloma Leuk. 17 (Suppl. 2), 217–218 (2017).View Article
  109. FDA. FDA approves tisagenlecleucel for B cell ALL and tocilizumab for cytokine release syndrome. FDA https://​www.​fda.​gov/​drugs/​informationondru​gs/​approveddrugs/​ucm574154.​htm (2017).
  110. Genentech. ACTEMRA® (tocilizumab) prescribing information. FDA https://​www.​accessdata.​fda.​gov/​drugsatfda_​docs/​label/​2017/​125276s114lbl.​pdf (2017).
  111. Chen, F. et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J. Immunol. Methods 434, 1–8 (2016).PubMedPubMed CentralView Article
  112. Minoia, F. et al. Development and initial validation of the macrophage activation syndrome/primary hemophagocytic lymphohistiocytosis score, a diagnostic tool that differentiates primary hemophagocytic lymphohistiocytosis from macrophage activation syndrome. J. Pediatr. 189, 72–78 (2017).PubMedView Article
  113. Henter, J. I. et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 48, 124–131 (2007).PubMedView Article
  114. Frey, N. V. et al. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. Blood 124, 2296 (2014).View Article
  115. Hu, Y. et al. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J. Hematol. Oncol. 9, 70 (2016).PubMedPubMed CentralView Article
  116. Traube, C. et al. Cornell assessment of pediatric delirium: a valid, rapid, observational tool for screening delirium in the PICU. Crit. Care Med. 42, 656–663 (2014).PubMedPubMed CentralView Article
  117. Silver, G., Kearney, J., Traube, C. & Hertzig, M. Delirium screening anchored in child development: the Cornell Assessment for Pediatric Delirium. Palliat. Support. Care 13, 1005–1011 (2015).PubMedView Article
  118. Gust, J. et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).PubMedPubMed CentralView Article
  119. Taraseviciute, A. et al. Chimeric antigen receptor T cell-mediated neurotoxicity in non-human primates. Cancer Discov. 8, 750–763 (2018).PubMedView ArticlePubMed Central
  120. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl Med. 8, 355ra116 (2016).PubMedPubMed CentralView Article
  121. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).PubMedPubMed CentralView Article
  122. Stephen, J. et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood 126, 183–183 (2015).View Article
  123. Hovinga, C. A. Levetiracetam: a novel antiepileptic drug. Pharmacotherapy 21, 1375–1388 (2001).PubMedView Article
  124. Guenther, S. et al. Chronic valproate or levetiracetam treatment does not influence cytokine levels in humans. Seizure 23, 666–669 (2014).PubMedView Article
  125. Perez, E. E. et al. Update on the use of immunoglobulin in human disease: a review of evidence. J. Allergy Clin. Immunol. 139, S1–S46 (2017).PubMedView Article
  126. Weissert, R. Progressive multifocal leukoencephalopathy. J. Neuroimmunol. 231, 73–77 (2011).PubMedView Article
  127. Durali, D., de Goer de Herve, M. G., Gasnault, J. & Taoufik, Y. B cells and progressive multifocal leukoencephalopathy: search for the missing link. Front. Immunol. 6, 241 (2015).PubMedPubMed CentralView Article
  128. Abdel-Azim, H., Elshoury, A., Mahadeo, K. M., Parkman, R. & Kapoor, N. Humoral immune reconstitution kinetics after allogeneic hematopoietic stem cell transplantation in children: a maturation block of IgM memory B cells may lead to impaired antibody immune reconstitution. Biol. Blood Marrow Transplant 23, 1437–1446 (2017).PubMedView Article
  129. Dalba, C., Bellier, B., Kasahara, N. & Klatzmann, D. Replication-competent vectors and empty virus-like particles: new retroviral vector designs for cancer gene therapy or vaccines. Mol. Ther. 15, 457–466 (2007).PubMedView Article
  130. Centre for Biologics Evaluation and Research. Gene therapy clinical trials–observing subjects for delayed adverse events. FDA https://​www.​fda.​gov/​downloads/​BiologicsBloodVa​ccines/​GuidanceComplian​ceRegulatoryInfo​rmation/​Guidances/​CellularandGeneT​herapy/​ucm078719.​pdf (2006).
  131. Centre for Biologics Evaluation and Research. Supplemental guidance on testing for replication competent retrovirus in retroviral vector based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. FDA https://​www.​fda.​gov/​downloads/​biologicsbloodva​ccines/​guidancecomplian​ceregulatoryinfo​rmation/​guidances/​cellularandgenet​herapy/​ucm078723.​pdf (2006).
  132. Bennett, T. D. et al. Existing data analysis in pediatric critical care research. Front. Pediatr. 2, 79 (2014).PubMedPubMed CentralView Article
  133. Cope, S. et al. Expert elicitation of long-term survival for pediatric acute lymphoblastic leukemia patients receiving CTL019 in Eliana phase II study. Blood 130, 3377 (2017).
  134. Jackson, H. J. & Brentjens, R. J. Overcoming antigen escape with CAR T cell therapy. Cancer Discov. 5, 1238–1240 (2015).PubMedPubMed CentralView Article
  135. Doorenbos, A. et al. Palliative care in the pediatric ICU: challenges and opportunities for family-centered practice. J. Soc. Work End Life Palliat Care 8, 297–315 (2012).PubMedPubMed CentralView Article
  136. Yanni Hao, L. K. Cost-effectiveness analysis of CTL019 for the treatment of pediatric and young adult patients with relapsed or refractory B-cell acute lymphoblastic leukemia in the United States. Blood 130, 609 (2017).
  137. LaMattina, J. Pharma’s paradox: cure a deadly childhood disease and then get attacked on price. Forbes https://​www.​forbes.​com/​sites/​johnlamattina/​2017/​11/​28/​cure-a-deadly-childhood-disease-and-then-get-attacked-on-price/​#7089d1696479 (2017).
  138. Prasad, V. Immunotherapy: tisagenlecleucel - the first approved CAR-T cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11–12 (2018).PubMedView Article
  139. Sanders, G. D. et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA 316, 1093–1103 (2016).View ArticlePubMed
  140. Gold, M. Panel on cost-effectiveness in health and medicine. Med. Care 34, DS197–199 (1996).PubMedView Article
  141. American Nurses Association. Care coordination and nurses’ essential role. Am. Nurses Associ. https://​www.​nursingworld.​org/​~4afbf2/​globalassets/​practiceandpolic​y/​health-policy/​cnpe-care-coord-position-statement-final--draft-6-12-2012.​pdf (2012).
  142. Antonelli, R. C., Stille, C. J. & Antonelli, D. M. Care coordination for children and youth with special health care needs: a descriptive, multisite study of activities, personnel costs, and outcomes. Pediatrics 122, e209–e216 (2008).PubMedView Article
  143. FDA. Approved Risk Evaluation and Mitigation Strategies (REMS) for KymriahTM(tisagenlecleucel). FDA https://​www.​Accessdata.​fda.​gov/​Scripts/​Cder/​Rems/​Index.​cfm?​Event=​IndvRemsDetails.​Page&​REMS=​368 (2017).
  144. Bayntun, C., Rockenschaub, G. & Murray, V. Developing a health system approach to disaster management: A qualitative analysis of the core literature to complement the WHO Toolkit for assessing health-system capacity for crisis management. PLOS Curr. 4, e5028b6037259a (2012).PubMedPubMed Central
  145. Kevin, H., Morchel, H., Raheem, M. & Stevens, L. Electronic health records access during a disaster. Online J. Publ. Health Inform 5, 232 (2014).
  146. Wingard, J. R. et al. Preparing for the unthinkable: emergency preparedness for the hematopoietic cell transplant program. Biol. Blood Marrow Transplant 12, 1229–1238 (2006).PubMedView ArticlePubMed Central
  147. Frisen, L. Swelling of the optic nerve head: a staging scheme. J. Neurol. Neurosurg. Psychiatry 45, 13–18 (1982).PubMedPubMed CentralView Article