Skip to main content
Top

23-06-2016 | Neuroendocrine tumors | Article

Somatostatin receptor PET/MRI for the evaluation of neuroendocrine tumors

Journal: Clinical and Translational Imaging

Authors: Thomas A. Hope, Miguel Hernandez Pampaloni, Robert R. Flavell, Eric K. Nakakura, Emily K. Bergsland

Publisher: Springer Milan

Abstract

With the introduction of simultaneous PET/MRI scanners, concurrent acquisition of PET and MRI data is feasible, allowing for improved patient convenience and decreased radiation dose. Although PET/MRI has been used in many settings, not all cancers benefit from the combined modality. With the availability of somatostatin receptor-targeted PET tracers such as 68Ga-DOTA-TOC and 68Ga-DOTA-TATE, imaging of NET patients has refocused on targeted imaging, particularly with the development of peptide receptor radiotherapy. Nonetheless, there are many patients who continue to benefit from dedicated MR imaging, such as those with liver-predominant disease. In these patients, SSR PET/MRI is an important option for optimal imaging. Both diffusion-weighted imaging and hepatobiliary phase imaging provide improved lesion detection compared to conventional MRI and CT, and the results can effect therapeutic decisions. Additionally, the use of motion correction techniques can be used to leverage the additional PET data acquired in dedicated liver PET/MRI to remove respiratory artifacts.
Literature
1.
Hallet J, Law CHL, Cukier M, Saskin R, Liu N, Singh S (2015) Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer 121:589–597CrossRefPubMed
2.
Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S (2010) The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 39:707–712CrossRefPubMed
3.
Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 2010
4.
Ferrone CR, Tang LH, Tomlinson J et al (2007) Determining prognosis in patients with pancreatic endocrine neoplasms: can the WHO classification system be simplified? J Clin Oncol 25:5609–5615CrossRefPubMed
5.
Modlin IM, Oberg K, Chung DC et al (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9:61–72CrossRefPubMed
6.
Hakim FA, Alexander JA, Huprich JE, Grover M, Enders FT (2011) CT-enterography may identify small bowel tumors not detected by capsule endoscopy: eight years experience at Mayo Clinic Rochester. Dig Dis Sci 56:2914–2919CrossRefPubMed
7.
Sankowski AJ, Ćwikla JB, Nowicki ML et al (2012) The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med Sci Monit 18:33–40CrossRef
8.
Mayerhoefer ME, Ba-Ssalamah A, Weber M et al (2013) Gadoxetate-enhanced versus diffusion-weighted MRI for fused Ga-68-DOTANOC PET/MRI in patients with neuroendocrine tumours of the upper abdomen. Eur Radiol 23:1978–1985CrossRefPubMed
9.
Rinke A, Müller H-H, Schade-Brittinger C et al (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27:4656–4663CrossRefPubMed
10.
Harris AG (1994) Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut 35:S1–S4CrossRefPubMedPubMedCentral
11.
Bombardieri E, Ambrosini V, Aktolun C, et al. (2010) 111 In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37:1441–1448CrossRefPubMed
12.
Balon HR, Brown TLY, Goldsmith SJ et al (2011) The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol. 39:317–324CrossRefPubMed
13.
Deppen SA, Liu E, Blume JD, et al. (2016) Safety and Efficacy of 68Ga-DOTATATE PET/CT for Diagnosis, Staging, and Treatment Management of Neuroendocrine Tumors. J Nucl Med 57:708–714CrossRefPubMed
14.
Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870CrossRefPubMed
15.
Velikyan I, Sundin A, Sörensen J et al (2014) Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med 55:204–210CrossRefPubMed
16.
Krausz Y, Freedman N, Rubinstein R et al (2011) 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (OctreoScan®). Mol Imaging Biol 13:583–593CrossRefPubMed
17.
Hofman MS, Lau WFE, Hicks RJ (2015) Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics 35:500–516CrossRefPubMed
18.
Kayani I, Bomanji JB, Groves A et al (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer 112:2447–2455CrossRefPubMed
19.
Tan EH, Tan CH (2011) Imaging of gastroenteropancreatic neuroendocrine tumors. World J Clin Oncol 2:28–43CrossRefPubMedPubMedCentral
20.
Binderup T, Knigge U, Loft A et al (2010) Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med 51:704–712CrossRefPubMed
21.
Severi S, Nanni O, Bodei L et al (2013) Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:881–888CrossRefPubMed
22.
Hope TA, Pampaloni MH, Nakakura E et al. (2015) Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging
23.
Burris NS, Johnson KM, Larson PEZ et al. (2015) Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology 278(1):239–246. doi:10.​1148/​radiol.​2015150489 CrossRefPubMedPubMedCentral
24.
de Mestier L, Dromain C, d’Assignies G et al (2014) Evaluating digestive neuroendocrine tumor progression and therapeutic responses in the era of targeted therapies: state of the art. Endocr Relat Cancer BioScientifica 21:R105–R120. doi:10.​1530/​ERC-13-0365 CrossRef
25.
Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V et al (2013) Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Invest Radiol 48:273–279CrossRefPubMed
26.
Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK (2015) Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys 2:21CrossRefPubMedPubMedCentral
27.
Catana C (2015) Motion correction options in PET/MRI. Semin Nucl Med 45:212–223CrossRefPubMedPubMedCentral
28.
Grimm R, Fürst S, Souvatzoglou M et al (2015) Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal 19:110–120CrossRefPubMed
29.
Manber R, Thielemans K, Hutton B et al (2015) Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med
30.
Nagle SK, Busse RF, Brau AC et al (2012) High resolution navigated three-dimensional T1-weighted hepatobiliary MRI using gadoxetic acid optimized for 1.5 Tesla. J Magn Reson Imaging 36:890–899. doi:10.​1002/​jmri.​23713 CrossRefPubMedPubMedCentral
31.
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505CrossRefPubMed
32.
Shah B, Anderson SW, Scalera J, Jara H, Soto JA (2011) Quantitative MR imaging: physical principles and sequence design in abdominal imaging. Radiographics 31:867–880CrossRefPubMed
33.
Taouli B, Koh D-M (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66CrossRefPubMed
34.
Soyer P, Boudiaf M, Placé V et al (2011) Preoperative detection of hepatic metastases: comparison of diffusion-weighted, T2-weighted fast spin echo and gadolinium-enhanced MR imaging using surgical and histopathologic findings as standard of reference. Eur J Radiol 80:245–252CrossRefPubMed
35.
d’Assignies G, Fina P, Bruno O et al (2013) High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology 268:390–399CrossRefPubMed
36.
Vandecaveye V, De Keyzer F, Verslype C et al (2009) Diffusion-weighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol 19:2456–2466CrossRefPubMed
37.
Vandecaveye V, Dirix P, De Keyzer F et al (2012) Diffusion-weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 82:1098–1107CrossRefPubMed
38.
Kokabi N, Camacho JC, Xing M et al (2014) Apparent diffusion coefficient quantification as an early imaging biomarker of response and predictor of survival following yttrium-90 radioembolization for unresectable infiltrative hepatocellular carcinoma with portal vein thrombosis. Abdom Imaging 39:969–978CrossRefPubMed
39.
Jacobsson H, Larsson P, Jonsson C, Jussing E, Grybäck P (2012) Normal uptake of 68Ga-DOTA-TOC by the pancreas uncinate process mimicking malignancy at somatostatin receptor PET. Clin Nucl Med 37:362–365CrossRefPubMed
40.
Al-Ibraheem A, Bundschuh RA, Notni J et al (2011) Focal uptake of 68Ga-DOTATOC in the pancreas: pathological or physiological correlate in patients with neuroendocrine tumours? Eur J Nucl Med Mol Imaging 38:2005–2013CrossRefPubMed