Skip to main content
Top

07-04-2015 | Surgery | Article

Surgical issues in patients with breast cancer receiving neoadjuvant chemotherapy

Authors: Tari A. King, Monica Morrow

Abstract

Early randomized trials of the addition of neoadjuvant chemotherapy (NACT) to the treatment regimen of patients with breast cancer failed to demonstrate an improvement in overall survival compared with conventional adjuvant therapy; nevertheless, the increased opportunities for breast conservation, owing to downstaging of the primary tumour, and enthusiasm regarding the potential to tailor systemic therapy based on responses observed in the neoadjuvant setting, resulted in the adoption of this approach as a useful clinical tool. That the effectiveness of NACT varies by molecular subtype is becoming increasingly clear, and although the potential of tailoring adjuvant systemic therapy based on treatment response before surgery remains to be realized, the increasing rates of pathological complete response following NACT have had a considerable impact on locoregional treatment considerations. For example, NACT reduces the need for mastectomy and axillary lymph-node dissection, thus decreasing the morbidity of surgery, without compromising outcomes. However, selection of the ideal candidates for preoperative chemotherapy remains critical, and personalizing local therapy based on the degree of response is the subject of ongoing clinical trials. This article reviews the current issues surrounding surgery of the breast and axilla in patients with breast cancer receiving NACT.

Nat Rev Clin Oncol 2015; 12: 335–343. doi:10.1038/nrclinonc.2015.63​​​​​​​

Subject terms: Breast cancer • Chemotherapy • Outcomes research • Surgical oncology

Preoperative or neoadjuvant chemotherapy (NACT) was initially used in the treatment of patients with locally advanced breast cancer (T4a–T4d disease), after historical series of patients with inflammatory breast carcinoma (T4d disease) and other T4 breast tumours who were treated with initial surgery demonstrated high rates of local recurrence and poor survival.1, 2 The demonstration in the 1970s that adjuvant chemotherapy improved both disease-free survival and overall survival of women with lymph-node-positive breast cancer3, 4 led to a number of studies examining the role of NACT in locally advanced breast cancer. The results of early studies of NACT indicated a prolongation of disease-free survival and overall survival compared with historical controls,5, 6 coupled with the observation that major reductions in tumour volume occurred in 60–80% of patients treated,7 providing the rationale for clinical trials of this approach in earlier-stage operable breast cancer. The primary aim of these studies was to determine if NACT, through prompt treatment of micrometastases, improved survival compared to chemotherapy given postoperatively. However, a meta-analysis of nine randomized studies, comprising a total of 3,946 patients, found no significant survival difference between patients who received NACT versus those who received adjuvant therapy, with a summary risk ratio of 1.0 (95% CI 0.90–1.12).8 Although this lack of a survival difference has persisted in more-recent studies,9 a number of benefits of NACT have nevertheless emerged, including increased opportunity to perform breast-conserving surgery (BCS) and a reduced need for axillary lymph-node dissection (ALND).10 Additionally, the achievement of pathological complete response (pCR) to NACT has emerged as a powerful prognostic factor.11 The acceptance by the FDA of pCR rate as a criterion supporting the approval of new drugs,12 together with the other benefits discussed, suggests that the use of NACT will continue to increase. This paradigm shift raises a number of important questions regarding appropriate approaches to local therapy for breast cancer, as the guiding principles for surgery and postoperative radiotherapy in use today were developed based on the findings of trials in which surgery was the initial treatment modality. This article will review current issues surrounding surgery of the breast and axilla in women receiving NACT for breast cancer.

Literature
  1. Bozzetti, F., Saccozzi, R., De Lena, M. & Salvadori, B. Inflammatory cancer of the breast: analysis of 114 cases. J. Surg. Oncol. 18, 355–361 (1981).
  2. Haagensen, C. D. & Stout, A. P. Carcinoma of the breast. III. Results of treatment, 1935–1942. Ann. Surg. 134, 151–172 (1951).
  3. Bonadonna, G. et al. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N. Engl. J. Med. 294, 405–410 (1976).
  4. Fisher, B. et al. 1-phenylalanine mustard (L-PAM) in the management of primary breast cancer. A report of early findings. N. Engl. J. Med. 292, 117–122 (1975).
  5. Buzdar, A. U., Montague, E. D., Barker, J. L., Hortobagyi, G. N. & Blumenschein, G. R.Management of inflammatory carcinoma of breast with combined modality approach—an update. Cancer 47, 2537–2542 (1981).
  6. De Lena, M., Zucali, R., Viganotti, G., Valagussa, P. & Bonadonna, G. Combined chemotherapy–radiotherapy approach in locally advanced (T3b–T4) breast cancer. Cancer Chemother. Pharmacol. 1, 53–59 (1978).
  7. Hortobagyi, G. N. et al. Management of stage III primary breast cancer with primary chemotherapy, surgery, and radiation therapy. Cancer 62, 2507–2516 (1988).
  8. Mauri, D., Pavlidis, N. & Ioannidis, J. P. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J. Natl Cancer Inst. 97, 188–194 (2005).
  9. Mieog, J. S., van der Hage, J. A. & van de Velde, C. J. Neoadjuvant chemotherapy for operable breast cancer. Br. J. Surg. 94, 1189–1200 (2007).
  10. Fisher, B. et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J. Clin. Oncol. 15, 2483–2493 (1997).
  11. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).
  12. Prowell, T. M. & Pazdur, R. Pathological complete response and accelerated drug approval in early breast cancer. N. Engl. J. Med. 366, 2438–2441 (2012).
  13. van der Hage, J. A. et al. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J. Clin. Oncol. 19, 4224–4237 (2001).
  14. Bear, H. D. et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 21, 4165–4174 (2003).
  15. Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379, 633–640 (2012).
  16. Guarneri, V. et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J. Clin. Oncol. 30, 1989–1995 (2012).
  17. Untch, M. et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline–taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol. 13, 135–144 (2012).
  18. Katz, S. J. et al. Patient involvement in surgery treatment decisions for breast cancer. J. Clin. Oncol. 23, 5526–5533 (2005).
  19. Rouzier, R. et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11, 5678–5685 (2005).
  20. Gianni, L. et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol. 23, 7265–7277 (2005).
  21. Petrelli, F. & Barni, S. Response to neoadjuvant chemotherapy in ductal compared to lobular carcinoma of the breast: a meta-analysis of published trials including 1,764 lobular breast cancer. Breast Cancer Res. Treat. 142, 227–235 (2013).
  22. Lips, E. H. et al. Lobular histology and response to neoadjuvant chemotherapy in invasive breast cancer. Breast Cancer Res. Treat 136, 35–43 (2012).
  23. Ataseven, B. et al. Impact of multifocal or multicentric disease on surgery and locoregional, distant and overall survival of 6,134 breast cancer patients treated with neoadjuvant chemotherapy. Ann. Surg. Oncol. 22, 1118–1127 (2015).
  24. Boughey, J. C. et al. Tumor biology correlates with rates of breast-conserving surgery and pathologic complete response after neoadjuvant chemotherapy for breast cancer: findings from the ACOSOG Z1071 (Alliance) prospective multicenter clinical trial. Ann. Surg. 260, 608–614 (2014).
  25. Hylton, N. M. et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I-SPY TRIAL. Radiology 263, 663–672 (2012).
  26. Marinovich, M. L. et al. Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy. J. Natl Cancer Inst. 105, 321–333 (2013).
  27. Rosen, E. L. et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. AJR Am. J. Roentgenol. 181, 1275–1282 (2003).
  28. Turnbull, L. W. Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed. 22, 28–39 (2009).
  29. Yeh, E. et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am. J. Roentgenol.184, 868–877 (2005).
  30. Chen, J. H. et al. Breast cancer: evaluation of response to neoadjuvant chemotherapy with 3.0-T MR imaging. Radiology 261, 735–743 (2011).
  31. De Los Santos, J. F. et al. Magnetic resonance imaging as a predictor of pathologic response in patients treated with neoadjuvant systemic treatment for operable breast cancer. Translational Breast Cancer Research Consortium trial 017. Cancer 119, 1776–1783 (2013).
  32. Straver, M. E. et al. MRI-model to guide the surgical treatment in breast cancer patients after neoadjuvant chemotherapy. Ann. Surg. 251, 701–707 (2010).
  33. Charehbili, A. et al. Accuracy of MRI for treatment response assessment after taxane- and anthracycline-based neoadjuvant chemotherapy in HER2-negative breast cancer. Eur. J. Surg. Oncol. 40, 1216–1221 (2014).
  34. Weiss, A. et al. Calcifications on mammogram do not correlate with tumor size after neoadjuvant chemotherapy. Ann. Surg. Oncol. 21, 3310–3316 (2014).
  35. Boughey, J. C. et al. Impact of preoperative versus postoperative chemotherapy on the extent and number of surgical procedures in patients treated in randomized clinical trials for breast cancer. Ann. Surg. 244, 464–470 (2006).
  36. Wolmark, N., Wang, J., Mamounas, E., Bryant, J. & Fisher, B. Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J. Natl Cancer Inst. Monogr. 2001, 96–102 (2001).
  37. Chen, A. M. et al. Breast conservation after neoadjuvant chemotherapy: the MD Anderson cancer center experience. J. Clin. Oncol. 22, 2303–2312 (2004).
  38. Abt, N. B. et al. Neoadjuvant chemotherapy and short-term morbidity in patients undergoing mastectomy with and without breast reconstruction. JAMA Surg. 149, 1068–1076 (2014).
  39. Gradishar, W. J. et al. Breast cancer version 3.2014. J. Natl Compr. Canc. Netw. 12, 542–590 (2014).
  40. Mamounas, E. P. et al. Sentinel node biopsy after neoadjuvant chemotherapy in breast cancer: results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 23, 2694–2702 (2005).
  41. Hunt, K. K. et al. Sentinel lymph node surgery after neoadjuvant chemotherapy is accurate and reduces the need for axillary dissection in breast cancer patients. Ann. Surg. 250, 558–566 (2009).
  42. van Deurzen, C. H. et al. Accuracy of sentinel node biopsy after neoadjuvant chemotherapy in breast cancer patients: a systematic review. Eur. J. Cancer 45, 3124–3130 (2009).
  43. Xing, Y. et al. Meta-analysis of sentinel lymph node biopsy after preoperative chemotherapy in patients with breast cancer. Br. J. Surg. 93, 539–546 (2006).
  44. Classe, J. M. et al. Sentinel lymph node biopsy after neoadjuvant chemotherapy for advanced breast cancer: results of Ganglion Sentinelle et Chimiotherapie Neoadjuvante, a French prospective multicentric study. J. Clin. Oncol. 27, 726–732 (2009).
  45. Goyal, A., Newcombe, R. G., Chhabra, A. & Mansel, R. E. Factors affecting failed localisation and false-negative rates of sentinel node biopsy in breast cancer—results of the ALMANAC validation phase. Breast Cancer Res. Treat. 99, 203–208 (2006).
  46. Kelly, A. M., Dwamena, B., Cronin, P. & Carlos, R. C. Breast cancer sentinel node identification and classification after neoadjuvant chemotherapy-systematic review and meta analysis. Acad. Radiol. 16, 551–563 (2009).
  47. Kim, T., Giuliano, A. E. & Lyman, G. H. Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 106, 4–16 (2006).
  48. McMasters, K. M. et al. Sentinel lymph node biopsy for breast cancer: a suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. J. Clin. Oncol. 18, 2560–2566 (2000).
  49. Tafra, L., Verbanac, K. M. & Lannin, D. R. Preoperative chemotherapy and sentinel lymphadenectomy for breast cancer. Am. J. Surg. 182, 312–315 (2001).
  50. Veronesi, U. et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N. Engl. J. Med. 349, 546–553 (2003).
  51. Mamounas, E. P. et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J. Clin. Oncol. 30, 3960–3966 (2012).
  52. Dominici, L. S. et al. Cytologically proven axillary lymph node metastases are eradicated in patients receiving preoperative chemotherapy with concurrent trastuzumab for HER2-positive breast cancer. Cancer 116, 2884–2889 (2010).
  53. Hennessy, B. T. et al. Outcome after pathologic complete eradication of cytologically proven breast cancer axillary node metastases following primary chemotherapy. J. Clin. Oncol. 23, 9304–9311 (2005).
  54. Shen, J. et al. Feasibility and accuracy of sentinel lymph node biopsy after preoperative chemotherapy in breast cancer patients with documented axillary metastases. Cancer 109, 1255–1263 (2007).
  55. Alvarado, R. et al. The role for sentinel lymph node dissection after neoadjuvant chemotherapy in patients who present with node-positive breast cancer. Ann. Surg. Oncol.19, 3177–3184 (2012).
  56. Boileau, J. F. et al. Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: the SN FNAC study. J. Clin. Oncol. 33, 258–264 (2015).
  57. Boughey, J. C. et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA310, 1455–1461 (2013).
  58. Kuehn, T. et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol. 14, 609–618 (2013).
  59. Krag, D. N. et al. Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial. Lancet Oncol. 8, 881–888 (2007).
  60. Tafra, L. et al. Multicenter trial of sentinel node biopsy for breast cancer using both technetium sulfur colloid and isosulfan blue dye. Ann. Surg. 233, 51–59 (2001).
  61. Donker, M. et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981–22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 15, 1303–1310 (2014).
  62. Giuliano, A. E. et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305, 569–575 (2011).
  63. Giuliano, A. E. et al. Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: the American College of Surgeons Oncology Group Z0011 randomized trial. Ann. Surg. 252, 426–432 (2010).
  64. Krag, D. N. et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 11, 927–933 (2010).
  65. Edge, S. et alAJCC cancer staging manual 7th edn (Springer, 2010).
  66. Boughey, J. C. et al. Methods impacting the false negative rate of sentinel lymph node surgery in patients presenting with node positive breast cancer (T0–T4, N1–2) who receive neoadjuvant chemotherapy—Results from a prospective trial—ACOSOG Z1071 (Alliance) [Poster No. P2-01-02]. Presented at the 2014 San Antonio Breast Cancer Symposium.
  67. NCI Community Oncology Research Program. CTSU Alliance A011202: A Randomized Phase III Trial Evaluating the Role of Axillary Lymph Node Dissection in Breast Cancer Patients (CT1–3 N1) Who Have Positive Sentinel Lymph Node Disease After Neoadjuvant Chemotherapy [online]. (2014).
  68. Mamounas, E. P. et al. NSABP B-51/RTOG 1304: randomized phase III clinical trial evaluating the role of postmastectomy chest wall and regional nodal XRT (CWRNRT) and post-lumpectomy RNRT in patients (pts) with documented positive axillary (Ax) nodes before neoadjuvant chemotherapy (NC) who convert to pathologically negative Ax nodes after NC [abstract]. J. Clin. Oncol. 32, TPS1141 (2014).