Skip to main content
Top

24-02-2014 | Skin cancers | Book chapter | Article

4. Melanoma. Part I. Risk Assessment, Diagnosis, and Prognosis: Using Molecular Tools to Diagnose Melanoma, Predict Its Behavior, and Evaluate for Inheritable Forms

Authors: Gregory A. Hosler, M.D., Ph.D, Kathleen M. Murphy, Ph.D

Publisher: Springer Berlin Heidelberg

Abstract

For the past 200 years, the diagnosis of melanoma relied upon standard clinical and histologic criteria. Early diagnosis with surgical intervention had been the only chance for cure. Recent deciphering of melanoma’s genetic underpinnings and signaling pathways, however, has revolutionized the complete management of the melanoma patient. Assessment of patient risk is no longer limited to ultraviolet exposure but includes evaluation of the patient’s genome. Diagnosis is no longer limited to clinical and microscopic inspection of the tumor, but includes assessment of the tumors genome for chromosomal abnormalities and signaling molecule mutations. Prognosis is no longer linked only to tumor size but can be impacted by the amplification of tumor oncogenes and/or the molecular detection of micrometastases. And, finally, treatment is no longer limited to “excise and pray” tactics but can be tailored to the individual, reversing the action of the very mutations that led to melanomagenesis. With these new molecular tools, it is now clear that melanoma is not a single tumor but a complex array of tumors, each with a unique molecular profile, similar only in their genesis within a host melanocyte. This chapter begins the discussion on melanoma, exploring the role of molecular diagnostics in assessing patient risk (i.e., hereditary melanoma), diagnosis, prognosis, and reclassification schemes, with the focus on practical, or current, applications.
Literature
1.
Rebecca VW, Sondak VK, Smalley KSM. A brief history of melanoma: from mummies to mutations. Melanoma Res. 2012;22:114–22.PubMedCentralPubMedCrossRef
2.
Norris W. Case of fungoid disease. Edinb Med Surg J. 1820;16:562–5.
3.
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.PubMedCrossRef
4.
Tucker MA. Melanoma epidemiology. Hematol Oncol Clin North Am. 2009;23:383–95, vii.PubMedCentralPubMedCrossRef
5.
Udayakumar D, Tsao H. Melanoma genetics: an update on risk-associated genes. Hematol Oncol Clin North Am. 2009;23:415–29, vii.PubMedCrossRef
6.
Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002;94:894–903.PubMedCrossRef
7.
Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26:1131–55.PubMedCentralPubMedCrossRef
8.
Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril M-F, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66:9818–28.PubMedCrossRef
9.
Clark WH, Reimer RR, Greene M, Ainsworth AM, Mastrangelo MJ. Origin of familial malignant melanomas from heritable melanocytic lesions. “The B-K mole syndrome”. Arch Dermatol. 1978;114:732–8.PubMedCrossRef
10.
Lynch HT, Frichot BC, Lynch JF. Familial atypical multiple mole-melanoma syndrome. J Med Genet. 1978;15:352–6.PubMedCentralPubMedCrossRef
11.
Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet. 2001;69:765–73.PubMedCentralPubMedCrossRef
12.
Leachman SA, Carucci J, Kohlmann W, Banks KC, Asgari MM, Bergman W, et al. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol. 2009;61:677.e1–14.CrossRef
13.
Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst. 2000;92:1006–10.PubMedCrossRef
14.
Kennedy C, ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol. 2001;117:294–300.PubMedCrossRef
15.
Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313:521–2.PubMedCrossRef
16.
Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Bishop DT, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44:99–106.PubMedCentralPubMedCrossRef
17.
Parker JF, Florell SR, Alexander A, DiSario JA, Shami PJ, Leachman SA. Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol. 2003;139:1019–25.PubMedCrossRef
18.
Berwick M, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, et al. The prevalence of CDKN2A germ-line mutations and relative risk for cutaneous malignant melanoma: an international population-based study. Cancer Epidemiol Biomarkers Prev. 2006;15:1520–5.PubMedCrossRef
19.
Orlow I, Begg CB, Cotignola J, Roy P, Hummer AJ, Clas BA, et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J Invest Dermatol. 2007;127:1234–43.PubMedCrossRef
20.
GenoMel. Genetic counselling and testing for hereditary melanoma [Internet]. 2014. Available from: http://​www.​genomel.​org/​genetic_​counselling.
21.
Weedon D, editor. Lentigines, nevi, and melanomas. Weedon’s skin pathology. 3rd ed. New York: Churchill Livingstone Elsevier; 2010. p. 709–56.
22.
Hosler GA, Moresi JM, Barrett TL. Nevi with site-related atypia: a review of melanocytic nevi with atypical histologic features based on anatomic site. J Cutan Pathol. 2008;35:889–98.PubMedCrossRef
23.
Brochez L, Verhaeghe E, Grosshans E, Haneke E, Piérard G, Ruiter D, et al. Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions. J Pathol. 2002;196:459–66.PubMedCrossRef
24.
Lodha S, Saggar S, Celebi JT, Silvers DN. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol. 2008;35:349–52.PubMedCrossRef
25.
Prieto VG, Shea CR. Immunohistochemistry of melanocytic proliferations. Arch Pathol Lab Med. 2011;135:853–9.PubMed
26.
Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003;34:369–76.PubMedCrossRef
27.
Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 2009;460:278–82.PubMedCentralPubMedCrossRef
28.
Kallioniemi A, Visakorpi T, Karhu R, Pinkel D, Kallioniemi O. Gene copy number analysis by fluorescence in situ hybridization and comparative genomic hybridization. Methods. 1996;9:113–21.PubMedCrossRef
29.
Urban AE, Korbel JO, Selzer R, Richmond T, Hacker A, Popescu GV, et al. High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A. 2006;103:4534–9.PubMedCentralPubMedCrossRef
30.
Bastian BC, LeBoit PE, Hamm H, Bröcker EB, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998;58:2170–5.PubMed
31.
Bastian BC, Olshen AB, LeBoit PE, Pinkel D. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol. 2003;163:1765–70.PubMedCentralPubMedCrossRef
32.
Bastian BC, Wesselmann U, Pinkel D, Leboit PE. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol. 1999;113:1065–9.PubMedCrossRef
33.
Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157:967–72.PubMedCentralPubMedCrossRef
34.
Ali L, Helm T, Cheney R, Conroy J, Sait S, Guitart J, et al. Correlating array comparative genomic hybridization findings with histology and outcome in spitzoid melanocytic neoplasms. Int J Clin Exp Pathol. 2010;3:593–9.PubMedCentralPubMed
35.
Maize JC, McCalmont TH, Carlson JA, Busam KJ, Kutzner H, Bastian BC. Genomic analysis of blue nevi and related dermal melanocytic proliferations. Am J Surg Pathol. 2005;29:1214–20.PubMedCrossRef
36.
Bastian BC, Xiong J, Frieden IJ, Williams ML, Chou P, Busam K, et al. Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol. 2002;161:1163–9.PubMedCentralPubMedCrossRef
37.
Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33:1146–56.PubMedCrossRef
38.
Kerl K, Palmedo G, Wiesner T, Mentzel T, Rütten A, Schärer L, et al. A proposal for improving multicolor FISH sensitivity in the diagnosis of malignant melanoma using new combined criteria. Am J Dermatopathol. 2012;34:580–5.PubMedCrossRef
39.
Gerami P, Li G, Pouryazdanparast P, Blondin B, Beilfuss B, Slenk C, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012;36:808–17.PubMedCrossRef
40.
Gaiser T, Kutzner H, Palmedo G, Siegelin MD, Wiesner T, Bruckner T, et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol. 2010;23:413–9.PubMedCrossRef
41.
Vergier B, Prochazkova-Carlotti M, de la Fouchardière A, Cerroni L, Massi D, De Giorgi V, et al. Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Mod Pathol. 2011;24:613–23.PubMedCrossRef
42.
Morey AL, Murali R, McCarthy SW, Mann GJ, Scolyer RA. Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation. Pathology. 2009;41:383–7.PubMedCrossRef
43.
Gammon B, Beilfuss B, Guitart J, Gerami P. Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe. Am J Surg Pathol. 2012;36:81–8.PubMedCrossRef
44.
Gerami P, Mafee M, Lurtsbarapa T, Guitart J, Haghighat Z, Newman M. Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. Arch Dermatol. 2010;146:273–8.PubMedCrossRef
45.
Gerami P, Beilfuss B, Haghighat Z, Fang Y, Jhanwar S, Busam KJ. Fluorescence in situ hybridization as an ancillary method for the distinction of desmoplastic melanomas from sclerosing melanocytic nevi. J Cutan Pathol. 2011;38:329–34.PubMedCrossRef
46.
Isaac AK, Lertsburapa T, Pathria Mundi J, Martini M, Guitart J, Gerami P. Polyploidy in spitz nevi: a not uncommon karyotypic abnormality identifiable by fluorescence in situ hybridization. Am J Dermatopathol. 2010;32:144–8.PubMedCrossRef
47.
Zembowicz A, Yang S-E, Kafanas A, Lyle SR. Correlation between histologic assessment and fluorescence in situ hybridization using MelanoSITE in evaluation of histologically ambiguous melanocytic lesions. Arch Pathol Lab Med. 2012;136(12):1571–9.PubMedCrossRef
48.
Tran TP, Titus-Ernstoff L, Perry AE, Ernstoff MS, Newsham IF. Alteration of chromosome 9p21 and/or p16 in benign and dysplastic nevi suggests a role in early melanoma progression (United States). Cancer Causes Control. 2002;13:675–82.PubMedCrossRef
49.
Sini MC, Manca A, Cossu A, Budroni M, Botti G, Ascierto PA, et al. Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma. Br J Dermatol. 2008;158:243–50.PubMed
50.
Busam KJ, Fang Y, Jhanwar SC, Pulitzer MP, Marr B, Abramson DH. Distinction of conjunctival melanocytic nevi from melanomas by fluorescence in situ hybridization. J Cutan Pathol. 2010;37:196–203.PubMedCrossRef
51.
Pouryazdanparast P, Newman M, Mafee M, Haghighat Z, Guitart J, Gerami P. Distinguishing epithelioid blue nevus from blue nevus-like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol. 2009;33:1396–400.PubMedCrossRef
52.
Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33:1783–8.PubMedCrossRef
53.
Gerami P, Barnhill RL, Beilfuss BA, LeBoit P, Schneider P, Guitart J. Superficial melanocytic neoplasms with pagetoid melanocytosis: a study of interobserver concordance and correlation with FISH. Am J Surg Pathol. 2010;34:816–21.PubMedCrossRef
54.
Boi S, Leonardi E, Fasanella S, Cantaloni C, Micciolo R. The four-color FISH probe in the diagnosis of melanocytic lesions. J Eur Acad Dermatol Venereol. 2010;24:1235–6.PubMedCrossRef
55.
Zimmermann AK, Hirschmann A, Pfeiffer D, Paredes BE, Diebold J. FISH analysis for diagnostic evaluation of challenging melanocytic lesions. Histol Histopathol. 2010;25:1139–47.PubMed
56.
Gerami P. Discussion on relative significance of specific chromosomal abnormalities in specific diagnostic settings (personal communication). 2013.
57.
North JP, Kageshita T, Pinkel D, LeBoit PE, Bastian BC. Distribution and significance of occult intraepidermal tumor cells surrounding primary melanoma. J Invest Dermatol. 2008;128:2024–30.PubMedCentralPubMedCrossRef
58.
Dalton SR, Gerami P, Kolaitis NA, Charzan S, Werling R, LeBoit PE, et al. Use of fluorescence in situ hybridization (FISH) to distinguish intranodal nevus from metastatic melanoma. Am J Surg Pathol. 2010;34:231–7.PubMedCentralPubMedCrossRef
59.
Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P. Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol. 2009;22:989–95.PubMedCrossRef
60.
Ryan D, Rafferty M, Hegarty S, O’Leary P, Faller W, Gremel G, et al. Topoisomerase I amplification in melanoma is associated with more advanced tumours and poor prognosis. Pigment Cell Melanoma Res. 2010;23:542–53.PubMedCrossRef
61.
Gerami P, Jewell SS, Pouryazdanparast P, Wayne JD, Haghighat Z, Busam KJ, et al. Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn. 2011;13:352–8.PubMedCentralPubMedCrossRef
62.
Davies MA, Samuels Y. Analysis of the genome to personalize therapy for melanoma. Oncogene. 2010;29:5545–55.PubMedCentralPubMedCrossRef
63.
Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.PubMedCrossRef
64.
Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.PubMedCrossRef
65.
Saroufim M, Habib R, Karram S, Youssef Massad C, Taraif S, Loya A, et al. BRAF analysis on a spectrum of melanocytic neoplasms: an epidemiological study across differing uv regions. Am J Dermatopathol. 2013;36(1):68–73.CrossRef
66.
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedCentralPubMedCrossRef
67.
Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.PubMedCrossRef
68.
Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–9.PubMed
69.
Indsto JO, Kumar S, Wang L, Crotty KA, Arbuckle SM, Mann GJ. Low prevalence of RAS-RAF-activating mutations in Spitz melanocytic nevi compared with other melanocytic lesions. J Cutan Pathol. 2007;34:448–55.PubMedCrossRef
70.
Ichii-Nakato N, Takata M, Takayanagi S, Takashima S, Lin J, Murata H, et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol. 2006;126:2111–8.PubMedCrossRef
71.
Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9.PubMedCentralPubMedCrossRef
72.
Dratviman-Storobinsky O, Cohen Y, Frenkel S, Pe’er J, Goldenberg-Cohen N. Lack of oncogenic GNAQ mutations in melanocytic lesions of the conjunctiva as compared to uveal melanoma. Invest Ophthalmol Vis Sci. 2010;51:6180–2.PubMedCrossRef
73.
Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43:1018–21.PubMedCentralPubMedCrossRef
74.
Wiesner T, Murali R, Fried I, Cerroni L, Busam K, Kutzner H, et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol. 2012;36:818–30.PubMedCentralPubMedCrossRef
75.
Balch CM, Gershenwald JE, Soong S-J, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.PubMedCentralPubMedCrossRef
76.
Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti III A, editors. Melanoma of the skin. AJCC cancer staging man. 7th ed. New York: Springer; 2011. p. 327–46.
77.
Yu LL, Flotte TJ, Tanabe KK, Gadd MA, Cosimi AB, Sober AJ, et al. Detection of microscopic melanoma metastases in sentinel lymph nodes. Cancer. 1999;86:617–27.PubMedCrossRef
78.
Prieto VG. Sentinel lymph nodes in cutaneous melanoma: handling, examination, and clinical repercussion. Arch Pathol Lab Med. 2010;134:1764–9.PubMed
79.
Hochberg M, Lotem M, Gimon Z, Shiloni E, Enk CD. Expression of tyrosinase, MIA and MART-1 in sentinel lymph nodes of patients with malignant melanoma. Br J Dermatol. 2002;146:244–9.PubMedCrossRef
80.
Davids V, Kidson SH, Hanekom GS. Melanoma patient staging: histopathological versus molecular evaluation of the sentinel node. Melanoma Res. 2003;13:313–24.PubMedCrossRef
81.
Takeuchi H, Morton DL, Kuo C, Turner RR, Elashoff D, Elashoff R, et al. Prognostic significance of molecular upstaging of paraffin-embedded sentinel lymph nodes in melanoma patients. J Clin Oncol. 2004;22:2671–80.PubMedCentralPubMedCrossRef
82.
Mocellin S, Hoon DSB, Pilati P, Rossi CR, Nitti D. Sentinel lymph node molecular ultrastaging in patients with melanoma: a systematic review and meta-analysis of prognosis. J Clin Oncol. 2007;25:1588–95.PubMedCrossRef
83.
Hilari JM, Mangas C, Xi L, Paradelo C, Ferrándiz C, Hughes SJ, et al. Molecular staging of pathologically negative sentinel lymph nodes from melanoma patients using multimarker, quantitative real-time rt-PCR. Ann Surg Oncol. 2009;16:177–85.PubMedCrossRef
84.
Carson KF, Wen DR, Li PX, Lana AM, Bailly C, Morton DL, et al. Nodal nevi and cutaneous melanomas. Am J Surg Pathol. 1996;20:834–40.PubMedCrossRef
85.
Itakura E, Huang R-R, Wen D-R, Cochran AJ. “Stealth” melanoma cells in histology-negative sentinel lymph nodes. Am J Surg Pathol. 2011;35:1657–65.PubMedCentralPubMedCrossRef
86.
Soikkeli J, Lukk M, Nummela P, Virolainen S, Jahkola T, Katainen R, et al. Systematic search for the best gene expression markers for melanoma micrometastasis detection. J Pathol. 2007;213:180–9.PubMedCrossRef
87.
Taube JM, Begum S, Shi C, Eshleman JR, Westra WH. Benign nodal nevi frequently harbor the activating V600E BRAF mutation. Am J Surg Pathol. 2009;33:568–71.PubMedCrossRef
88.
Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, et al. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer. 1997;19:22–8.PubMedCrossRef
89.
McLean IW, Saraiva VS, Burnier MN. Pathological and prognostic features of uveal melanomas. Can J Ophthalmol. 2004;39:343–50.PubMed
90.
Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004;64:7205–9.PubMedCrossRef
91.
Harbour JW, Chen R. The DecisionDx-UM gene expression profile test provides risk stratification and individualized patient care in uveal melanoma. PLoS Curr. 2013;5.
92.
Carlson JA, Slominski A, Linette GP, Mysliborski J, Hill J, Mihm MC, et al. Malignant melanoma 2003: predisposition, diagnosis, prognosis, and staging. Am J Clin Pathol. 2003;120(Suppl):S101–27.PubMed
93.
Bougnoux AC, Solassol J. The contribution of proteomics to the identification of biomarkers for cutaneous malignant melanoma. Clin Biochem. 2012;46(6):518–23.PubMedCrossRef
94.
Khoja L, Lorigan P, Zhou C, Lancashire M, Booth J, Cummings J, et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J Invest Dermatol. 2012;133(6):1582–90.PubMedCrossRef
95.
Salvianti F, Pinzani P, Verderio P, Ciniselli CM, Massi D, De Giorgi V, et al. Multiparametric analysis of cell-free DNA in melanoma patients. PLoS One. 2012;7:e49843.PubMedCentralPubMedCrossRef
96.
Dhillon N, Wilkinson J, Rogers A, Delman K, Maetzold D, Oelschlager K, et al. Gene expression profile signature (DecisionDx-Melanoma) to predict visceral metastatic risk in patients with stage I and stage II cutaneous melanoma. Am Soc Clin Oncol Annu Meet Abstr. 2012.
97.
American Medical Association; Hollmann PA, editor. Current procedural terminology, CPT 2014, Professional Edition. 4th ed. Chicago: American Medical Association; 2013. p. 433–516.
98.
Clark WH, From L, Bernardino EA, Mihm MC. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969;29:705–27.PubMed
99.
Conley J, Lattes R, Orr W. Desmoplastic malignant melanoma (a rare variant of spindle cell melanoma). Cancer. 1971;28:914–36.PubMedCrossRef
100.
Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.PubMedCrossRef
101.
Swetter SM, Boldrick JC, Jung SY, Egbert BM, Harvell JD. Increasing incidence of lentigo maligna melanoma subtypes: Northern California and national trends 1990-2000. J Invest Dermatol. 2005;125:685–91.PubMedCrossRef
102.
Lee J-H, Choi J-W, Kim Y-S. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011;164:776–84.PubMedCrossRef
103.
Davison JM, Rosenbaum E, Barrett TL, Goldenberg D, Hoque MO, Sidransky D, et al. Absence of V599E BRAF mutations in desmoplastic melanomas. Cancer. 2005;103:788–92.PubMedCrossRef
104.
Kim J, Lazar AJ, Davies MA, Homsi J, Papadopoulos NE, Hwu W-J, et al. BRAF, NRAS and KIT sequencing analysis of spindle cell melanoma. J Cutan Pathol. 2012;39:821–5.PubMedCrossRef