Skip to main content
Top

14-04-2015 | Renal cell carcinoma | Article

Tumour and patient factors in renal cell carcinoma—towards personalized therapy

Authors: Ahmed Q. Haddad, Vitaly Margulis

Abstract

Renal cell carcinoma (RCC) comprises a heterogeneous group of histologically and molecularly distinct tumour subtypes. Current targeted therapies have improved survival in patients with advanced disease but complete response occurs rarely, if at all. The genomic characterization of RCC is central to the development of novel targeted therapies. Large-scale studies employing multiple 'omics' platforms have led to the identification of key driver genes and commonly altered pathways. Specific molecular alterations and signatures that correlate with tumour phenotype and clinical outcome have been identified and can be harnessed for patient management and counselling. RCC seems to be a remarkably diverse malignancy with significant intratumour and intertumour genetic heterogeneity. The tumour microenvironment is increasingly recognized as a vital regulator of RCC tumour biology. Patient factors, including immune response and drug metabolism, vary widely, which can lead to widely divergent responses to drug therapy. Intratumour heterogeneity poses a significant challenge to the development of personalized therapies in RCC as a single biopsy might not accurately represent the clonal population ultimately responsible for aggressive biologic behaviour. On the other hand, the diversity of genomic alterations in RCC could also afford opportunities for targeting unique pathways based on analysis of an individual tumour's molecular composition.

Nat Rev Urol 2015; 12: 253–262. doi:10.1038/nrurol.2015.71​​​​​​​

Subject terms: Genetic variation • Genomics • Personalized medicine • Renal cancer

The past decade has witnessed a burgeoning in our understanding of the genetic and molecular pathogenesis of many cancers, made possible by the availability of increasingly precise and affordable 'omics' technologies. The knowledge garnered from large-scale genomic studies has facilitated the identification of potentially actionable genetic alterations on an unprecedented scale, setting the stage for the development of future targeted and personalized cancer therapies (Figure 1). The personalized approach to cancer therapy has already been realized for several malignancies, such as breast cancer, colon cancer and melanoma. The use of an anti-human epidermal growth factor receptor 2 (anti-HER2) antibody in HER2-amplified breast cancer,1, 2 anti-epidermal growth factor receptor (anti-EGFR) therapies in KRAS wild-type colon cancer,3 and serine/threonine-protein kinase B-raf (BRAF) inhibitor in BRAF (V600E) mutant melanoma4 are a few examples of the potential of targeted individualized approaches to cancer treatment. Amongst urologic malignancies, renal cell carcinoma (RCC) has been at the forefront of advances in targeted molecular therapeutics. Comprehensive genomic studies have demonstrated the remarkable genetic diversity of RCC and identified several driver mutations and a large number of passenger alterations that could, in part, explain the heterogeneous outcomes for patients harbouring disease that is otherwise histologically similar.5, 6, 7, 8, 9, 10, 11, 12, 13

Literature

1.    Joensuu, H. et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer Trial. J. Clin. Oncol. 27, 5685–5692 (2009). CAS ISI PubMed Article

2.    Spielmann, M. et al. Trastuzumab for patients with axillary-node-positive breast cancer: results of the FNCLCC-PACS 04 trial. J. Clin. Oncol. 27, 6129–6134 (2009). CAS ISI PubMed Article

3.    Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008). CAS ISI PubMed Article

4.    Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011). CAS ISI PubMed Article

5.    Cancer Genome Atlas Research, Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013). CAS PubMed Article

6.    Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet.45, 860–867 (2013). CAS PubMed Article

7.    Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010). CAS ISI PubMed Article

8.    Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2012). CAS Article

9.    Arai, E. et al. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int. J. Cancer 135, 1330–1342 (2014). CAS ISI PubMed Article

10.  Scelo, G. L. et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 5, 5135 (2014). CAS PubMed Article

11.  Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014). CAS ISI PubMed Article

12.  Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2014). CAS PubMed Article

13.  Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011). CAS ISI PubMed Article

14.  Srigley, J. R. et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am. J. Surg. Pathol. 37, 1469–1489 (2013). ISI PubMed Article

15.  Kane, C. J. et al. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 113, 78–83 (2008). ISI PubMed Article

16.  Janzen, N. K. et al. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol. Clin. North Am. 30, 843–852 (2003). ISI PubMed Article

17.  Chen, D. Y. & Uzzo, R. G. Evaluation and management of the renal mass. Med. Clin. North Am. 95, 179–189 (2011). PubMed Article

18.  Chin, A. I. et al. Surveillance strategies for renal cell carcinoma patients following nephrectomy. Rev. Urol. 8, 1–7 (2006). PubMed

19.  Karakiewicz, P. I. et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J. Clin. Oncol. 25, 1316–1322 (2007). ISI PubMed Article

20.  Zisman, A. et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J. Clin. Oncol. 19, 1649–1657 (2001). CAS ISI PubMed

21.  Frank, I. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J. Urol. 168, 2395–2400 (2002). ISI PubMed Article

22.  Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671 (2003). ISI PubMed Article

23.  Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007). ISI PubMed Article

24.  Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356, 125–134 (2007). CAS ISI PubMed Article Show context

25.  Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010). CAS ISI PubMed Article

26.  Negrier, S. et al. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 12, 673–680 (2011). CAS ISI PubMed Article

27.  Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010). CAS ISI PubMed Article

28.  Coppin, C. et al. Immunotherapy for advanced renal cell cancer [online]Cochrane Database Syst. Rev. (2004).

29.  Rosenberg, S. A. et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907–913 (1994). CAS ISI PubMed Article

30.  Rosenberg, S. A. et al. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Surg. 228, 307–319 (1998). CAS ISI PubMed Article

31.  Escudier, B. et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol.28, 2144–2150 (2010). CAS ISI PubMed Article

32.  Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009). CAS ISI PubMed Article

33.  Motzer, R. J. et al. Overall survival in renal-cell carcinoma with pazopanib versus sunitinib. N. Engl. J. Med. 370, 1769–1770 (2014). CAS ISI PubMed Article

34.  Rini, B. I. & Atkins, M. B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 10, 992–1000 (2009). CAS ISI PubMed Article

35.  Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014). CAS PubMed Article

36.  Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).CAS ISI PubMed Article

37.  Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993). CAS ISI PubMed Article

38.  Nickerson, M. L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008). CAS ISI PubMed Article

39.  Brugarolas, J. Molecular genetics of clear-cell renal cell carcinoma. J. Clin. Oncol. 32, 1968–1976 (2014). CAS ISI PubMed Article

40.  Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010). CAS ISI PubMed Article

41.  Robinson, C. M. & Ohh, M. The multifaceted von Hippel-Lindau tumour suppressor protein. FEBS Lett. 588, 2704–2711 (2014). CAS ISI PubMed Article

42.  Keith, B., Johnson, R. S. & Simon, M. C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2012). CAS ISI Article

43.  Thoma, C. R. et al. VHL loss causes spindle misorientation and chromosome instability. Nat. Cell Biol. 11, 994–1001 (2009). CAS ISI PubMed Article

44.  Kapur, P. et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 14, 159–167 (2013). CAS ISI PubMed Article

45.  Farley, M. N. et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol. Cancer Res. 11, 1061–1071 (2013). CAS ISI PubMed Article

46.  Wang, S. S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc. Natl Acad. Sci. USA 111, 16538–16543 (2014). CAS PubMed Article

47.  Haddad, A. Q. et al. Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma. Cancer 121, 43–50 (2014). CAS ISI PubMed Article

48.  Dondeti, V. R. et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 72, 112–121 (2012). CAS ISI PubMed Article

49.  Girgis, A. H. et al. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res. 72, 5273–5284 (2012). CAS ISI PubMed Article

50.  Beroukhim, R. et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681 (2009). CAS ISI PubMed Article

51.  Olshan, A. F. et al. Racial difference in histologic subtype of renal cell carcinoma. Cancer Med. 2, 744–749 (2013). ISI PubMed

52.  Lipworth, L. et al. Renal cell cancer histologic subtype distribution differs by race and sex. BJU Int. http://dx.doi.org/10.1111/bju.12950 (2014).

53.  Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013). CAS PubMed Article

54.  Nortier, J. L. et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N. Engl. J. Med. 342, 1686–1692 (2000). CAS ISI PubMed Article

55.  Lemy, A. et al. Late onset of bladder urothelial carcinoma after kidney transplantation for end-stage aristolochic acid nephropathy: a case series with 15-year follow-up. Am. J. Kidney Dis. 51, 471–477 (2008). ISI PubMed Article

56.  Modena, P. et al. UQCRH gene encoding mitochondrial Hinge protein is interrupted by a translocation in a soft-tissue sarcoma and epigenetically inactivated in some cancer cell lines. Oncogene 22, 4586–4593 (2003). CAS ISI PubMed Article

57.  Hoffman, A. M. & Cairns, P. Epigenetics of kidney cancer and bladder cancer. Epigenomics3, 19–34 (2011). CAS ISI PubMed Article

58.  Glas, A. M. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7, 278 (2006). CAS PubMed Article

59.  Takahashi, M. et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc. Natl Acad. Sci. USA 98, 9754–9759 (2001). CAS PubMed Article

60.  Sanjmyatav, J. et al. A specific gene expression signature characterizes metastatic potential in clear cell renal cell carcinoma. J. Urol. 186, 289–294 (2011). CAS ISI PubMed Article

61.  Jones, J. et al. Gene signatures of progression and metastasis in renal cell cancer. Clin. Cancer Res. 11, 5730–5739 (2005). CAS ISI PubMed Article

62.  Sultmann, H. et al. Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin. Cancer Res. 11, 646–655 (2005). ISI PubMed

63.  Zhao, H. et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 3, e13 (2006). CAS PubMed Article

64.  Brannon, A. R. et al. Molecular Stratification of Clear Cell Renal Cell Carcinoma by Consensus Clustering Reveals Distinct Subtypes and Survival Patterns. Genes Cancer 1, 152–163 (2010). CAS PubMed Article

65.  Brannon, A. R. et al. Meta-analysis of clear cell renal cell carcinoma gene expression defines a variant subgroup and identifies gender influences on tumor biology. Eur. Urol. 61, 258–268 (2012). ISI PubMed Article

66.  Brooks, S. A. et al. ClearCode34: A prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol. 66, 77–84 (2014). CAS ISI PubMed Article

67.  Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000). CAS ISI PubMed Article

68.  Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003). CAS PubMed Article

69.  Burrell, R. A. et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013). CAS ISI PubMed Article

70.  Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976). CAS ISI PubMed Article

71.  Fisher, R., Pusztai, L. & Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108, 479–485 (2013). CAS ISI PubMed Article

72.  Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010). CAS ISI PubMed Article

73.  Hovey, R. M. et al. Genetic alterations in primary bladder cancers and their metastases. Cancer Res. 58, 3555–3560 (1998). CAS ISI PubMed

74.  Jiang, J. K. et al. Genetic changes and clonality relationship between primary colorectal cancers and their pulmonary metastases—an analysis by comparative genomic hybridization. Genes Chromosomes Cancer 43, 25–36 (2005). CAS ISI PubMed Article

75.  Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012). CAS ISI PubMed Article

76.  Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009). CAS ISI PubMed Article

77.  Gulati, S. et al. Systematic Evaluation of the Prognostic Impact and Intratumour Heterogeneity of Clear Cell Renal Cell Carcinoma Biomarkers. Eur. Urol. 66, 936–948 (2014). CAS ISI PubMed Article

78.  Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011). CAS ISI PubMed Article

79.  Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014). CAS ISI PubMed Article

80.  Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012). CAS ISI PubMed Article

81.  Yang, X. J et al. A molecular classification of papillary renal cell carcinoma. Cancer Res. 65, 5628–5637 (2005). CAS ISI PubMed Article

82.  Delahunt, B. et al. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum. Pathol. 32, 590–595 (2001). CAS ISI PubMed Article

83.  Klatte, T. et al. Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin. Cancer Res. 15, 1162–1169 (2009). CAS ISI PubMed Article

84.  Kovacs, G. Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases. Am. J. Pathol. 134, 27–34 (1989). CAS ISI PubMed

85.  Zbar, B. et al. Hereditary papillary renal cell carcinoma. J. Urol. 151, 561–566 (1994). CAS ISI PubMed

86.  Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl Acad. Sci. USA 98, 3387–3392 (2001). CAS PubMed Article

87.  Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997). CAS ISI PubMed Article

88.  Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002). CAS ISI PubMed Article

89.  Nickerson, M. L et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell2, 157–164 (2002). CAS ISI PubMed Article

90.  Klomp, J. A. et al. Birt-Hogg-Dube renal tumors are genetically distinct from other renal neoplasias and are associated with up-regulation of mitochondrial gene expression. BMC Med. Genomics 3, 59 (2010). CAS PubMed Article

91.  Schwerdtle, R. F. et al. Allelic losses at chromosomes 1p, 2p, 6p, 10p, 13q, 17p, and 21q significantly correlate with the chromophobe subtype of renal cell carcinoma. Cancer Res.56, 2927–2930 (1996). CAS ISI PubMed

92.  Gad, S. et al. Mutations in BHD and TP53 genes, but not in HNF1beta gene, in a large series of sporadic chromophobe renal cell carcinoma. Br. J. Cancer 96, 336–340 (2007). CAS ISI PubMed Article

93.  Rohan, S. et al. Gene expression profiling separates chromophobe renal cell carcinoma from oncocytoma and identifies vesicular transport and cell junction proteins as differentially expressed genes. Clin. Cancer Res. 12, 6937–6945 (2006). CAS ISI PubMed Article

94.  Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013). CAS ISI PubMed Article

95.  Santoni, M. et al. Role of natural and adaptive immunity in renal cell carcinoma response to VEGFR-TKIs and mTOR inhibitor. Int. J. Cancer 134, 2772–2777 (2014). CAS ISI PubMed Article

96.  Purdue, M. P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011). CAS ISI PubMed Article

97.  Schodel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 44, 420–425, S1–2 (2012). CAS PubMed Article

98.  Moore, L. E. et al. Apolipoprotein E/C1 locus variants modify renal cell carcinoma risk. Cancer Res. 69, 8001–8008 (2009). CAS ISI PubMed Article

99.  Henrion, M. et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum. Mol. Genet. 22, 825–831 (2013). CAS ISI PubMed Article

100. Wu, X. et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum. Mol. Genet. 21, 456–462 (2012). CAS ISI PubMed Article

101. Audenet, F. et al. Germline genetic variations at 11q13 and 12p11 locus modulate age at onset for renal cell carcinoma J. Urol. 191, 487–492 (2014). CAS ISI PubMed Article

102. Schutz, F. A. et al. Single nucleotide polymorphisms and risk of recurrence of renal-cell carcinoma: a cohort study. Lancet Oncol. 14, 81–87 (2013). CAS ISI PubMed Article

103. Garcia-Donas, J. et al. Renal carcinoma pharmacogenomics and predictors of response: Steps toward treatment individualization. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2013.09.015 (2014).

104. Ito, N. et al. STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 25, 2785–2791 (2007). CAS ISI PubMed Article

105. van der Veldt, A. A. et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin. Cancer Res. 17, 620–629 (2011). CAS ISI PubMed Article

106. Kim, J. J. et al. Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer 118, 1946–1954 (2012). CAS ISI PubMed Article

107.  Scartozzi, M. et al. VEGF and VEGFR polymorphisms affect clinical outcome in advanced renal cell carcinoma patients receiving first-line sunitinib. Br. J. Cancer 108, 1126–1132 (2013). CAS ISI PubMed Article

108. Beuselinck, B. et al. Single-nucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 108, 887–900 (2013). CAS ISI PubMed Article

109. Lambrechts, D. et al. VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomised trials. Lancet Oncol. 13, 724–733 (2012). CAS ISI PubMed Article

110. Motzer, R. J. et al. Investigation of novel circulating proteins, germ line single-nucleotide polymorphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advanced renal cell carcinoma. Cancer Chemother. Pharmacol. 74, 739–750 (2014). CAS ISI PubMed Article

111. van Erp, N. P. et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J. Clin. Oncol. 27, 4406–4412 (2009). CAS ISI PubMed Article

112. Garcia-Donas, J. et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 12, 1143–1150 (2011). CAS ISI PubMed Article

113. Kim, H. R. et al. Pharmacogenetic determinants associated with sunitinib-induced toxicity and ethnic difference in Korean metastatic renal cell carcinoma patients. Cancer Chemother. Pharmacol. 72, 825–835 (2013). CAS ISI PubMed Article

114. Bissell, M. J. & Radisky, D. Putting tumours in context. Nat. Rev. Cancer 1, 46–54 (2001). CAS ISI PubMed Article

115. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995). CAS ISI PubMed

116. McDermott, D. F. et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 23, 133–141 (2005). CAS ISI PubMed Article

117. Yang, J. C. et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol. 21, 3127–3132 (2003). CAS ISI PubMed Article

118. Naidoo, J., Page, D. B. & Wolchok, J. D. Immune modulation for cancer therapy. Br. J. Cancer 111, 2214–2219 (2014). CAS ISI PubMed Article

119. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012). CAS ISI PubMed Article

120. Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007). CAS ISI PubMed Article

121. Finke, J. H. et al. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J. 19, 353–364 (2013). CAS ISI PubMed Article

122. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009). CAS ISI PubMed Article

123. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004). CAS ISI PubMed Article

124.  Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009). CAS ISI PubMed Article

125. Yuan, H. et al. Axitinib augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell accumulation. Biomed. Pharmacother. 68, 751–756 (2014). CAS ISI PubMed Article

126. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014). CAS ISI PubMed Article

127. Chanmee, T. et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6, 1670–1690 (2014). CAS PubMed Article

128.  Li, C. et al. Knockdown of VEGF receptor-1 (VEGFR-1) impairs macrophage infiltration, angiogenesis and growth of clear cell renal cell carcinoma (CRCC). Cancer Biol. Ther. 12, 872–880 (2011). CAS ISI PubMed Article

129. Menke, J. et al. Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res. 72, 187–200 (2012). CAS ISI PubMed Article

130. Kitagawa, D. et al. Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase. J. Biochem. 151, 47–55 (2012). CAS ISI PubMed Article

131. Lin, J. C. et al. Sorafenib induces autophagy and suppresses activation of human macrophage. Int. Immunopharmacol. 15, 333–339 (2013). CAS ISI PubMed Article

132. Thompson, R. H. et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl Acad. Sci. USA 101, 17174–17179 (2004). CAS PubMed Article

133. Jilaveanu, L. B. et al. PD-L1 Expression in Clear Cell Renal Cell Carcinoma: An Analysis of Nephrectomy and Sites of Metastases. J. Cancer 5, 166–172 (2014). CAS ISI PubMed Article

134. Bedke, J. et al. Targeted therapy in renal cell carcinoma: moving from molecular agents to specific immunotherapy. World J. Urol. 32, 31–38 (2014). CAS ISI PubMed Article