Skip to main content
Top

26-06-2017 | PARP inhibitors | Article

Synthetic lethality and cancer

Authors: Nigel J O'Neill, Melanie L Bailey, Philip Hieter

Abstract

A synthetic lethal interaction occurs between two genes when the perturbation of either gene alone is viable but the perturbation of both genes simultaneously results in the loss of viability. Key to exploiting synthetic lethality in cancer treatment are the identification and the mechanistic characterization of robust synthetic lethal genetic interactions. Advances in next-generation sequencing technologies are enabling the identification of hundreds of tumour-specific mutations and alterations in gene expression that could be targeted by a synthetic lethality approach. The translation of synthetic lethality to therapy will be assisted by the synthesis of genetic interaction data from model organisms, tumour genomes and human cell lines.

Nat Rev Gen 2017;18:613–623. doi:10.1038/nrg.2017.47

Advances in genome sequencing are driving a paradigm shift in cancer treatment1: it is now possible to rapidly identify genetic and epigenetic changes that differentiate tumour cells from non-tumour cells in a patient. Tumour-specific genetic alterations reveal not only the biological changes that drive tumour progression but also the vulnerabilities that can be exploited to selectively target the tumour with therapeutics. Personalized (or precision) genotype-targeted cancer treatment has the potential to offer individualized, highly specific therapies with fewer adverse effects, as well as to reduce the overtreatment of tumours. Indeed, personalized oncogenomic approaches are currently being adopted on the front lines of cancer care and have had success in the treatment of patients with tumours that have failed to respond to standard therapies2, 3, 4.

Literature
  1. Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017). Article | PubMed
  2. Laskin, J. et al. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. Cold Spring Harb. Mol. Case Stud. 1, a000570 (2015). Article | PubMed
  3. Stockley, T. L. et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial. Genome Med. 8, 109 (2016). Article | PubMed
  4. Swanton, C. et al. Consensus on precision medicine for metastatic cancers: a report from the MAP conference. Ann. Oncol. 27, 1443–1448 (2016). Article | PubMed
  5. Pagliarini, R., Shao, W. & Sellers, W. R. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 16, 280–296 (2015). Article | PubMed | CAS
  6. Dobzhansky, T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscuraGenetics 31, 269–290 (1946). PubMed
  7. Lucchesi, J. C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogasterGenetics 59, 37–44 (1968). PubMed
  8. Kaiser, C. A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990). Article | PubMed | CAS
  9. Hennessy, K. M., Lee, A., Chen, E. & Botstein, D. A group of interacting yeast DNA replication genes. Genes Dev. 5, 958–969 (1991). Article | PubMed | CAS
  10. Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiaeMol. Cell. Biol. 11, 1295–1305 (1991). ArticlePubMedCAS
  11. Nagel, R., Semenova, E. A. & Berns, A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep. 17, 1516–1531 (2016). Article | PubMed
  12. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997). Article | PubMed | CAS
  13. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013). ArticlePubMed | CAS
  14. Yan, H., Gibson, S. & Tye, B. K. Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes Dev. 5, 944–957 (1991). Article | PubMed | CAS
  15. Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics 143, 95–102 (1996). PubMed | CAS
  16. Bian, Y. et al. Synthetic genetic array screen identifies PP2A as a therapeutic target in Mad2-overexpressing tumors. Proc. Natl Acad. Sci. USA 111, 1628–1633 (2014). Article | PubMed | CAS
  17. Reid, R. J. et al. A synthetic dosage lethal genetic interaction between CKS1B and PLK1 is conserved in yeast and human cancer cells. Genetics 204, 807–819 (2016). Article | PubMed
  18. Duffy, S. et al. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. Proc. Natl Acad. Sci. USA 113, 9967–9976 (2016). ArticlePubMed
  19. Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004). Article | PubMed | CAS
  20. Haber, J. E. et al. Systematic triple-mutant analysis uncovers functional connectivity between pathways involved in chromosome regulation. Cell Rep. 3, 2168–2178 (2013). Article | PubMed | CAS
  21. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010). ArticlePubMed | CAS
  22. Jaspers, J. E. et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68–81 (2013). Article | PubMed | CAS
  23. Bindra, R. S. et al. Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol. Cell. Biol. 24, 8504–8518 (2004). ArticlePubMedCAS
  24. Chan, N. et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res. 70, 8045–8054 (2010). Article | PubMed | CAS
  25. Bandyopadhyay, S. et al. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389 (2010). Article | PubMed | CAS
  26. Guenole, A. et al. Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol. Cell 49, 346–358 (2013). ArticlePubMedCAS
  27. Li, X., O'Neil, N. J., Moshgabadi, N. & Hieter, P. Synthetic cytotoxicity: digenic interactions with TEL1/ATM mutations reveal sensitivity to low doses of camptothecin. Genetics 197, 611–623 (2014). ArticlePubMed
  28. Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10, 293–301 (2010). Article | PubMed | CAS
  29. Bailey, M. L. et al. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol. Cancer Ther. 13, 724–732 (2014). Article | PubMed
  30. Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science 266, 1821–1828 (1994). Article | PubMed | CAS
  31. Rudrapatna, V. A., Cagan, R. L. & Das, T. K. Drosophila cancer models. Dev. Dyn. 241, 107–118 (2012). ArticlePubMed | CAS
  32. Kirienko, N. V., Mani, K. & Fay, D. S. Cancer models in Caenorhabditis elegansDev. Dyn.239, 1413–1448 (2010). PubMed
  33. Tarailo, M., Tarailo, S. & Rose, A. M. Synthetic lethal interactions identify phenotypic “interologs” of the spindle assembly checkpoint components. Genetics 177, 2525–2530 (2007). ArticlePubMed
  34. Dixon, S. J., Andrews, B. J. & Boone, C. Exploring the conservation of synthetic lethal genetic interaction networks. Commun. Integr. Biol. 2, 78–81 (2009). Article | PubMed | CAS
  35. Boucher, B. & Jenna, S. Genetic interaction networks: better understand to better predict. Front. Genet. 4, 290 (2013). ArticlePubMed
  36. Baryshnikova, A., Costanzo, M., Myers, C. L., Andrews, B. & Boone, C. Genetic interaction networks: toward an understanding of heritability. Annu. Rev. Genomics Hum. Genet. 14, 111–133 (2013). Article | PubMed | CAS
  37. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008). Article | PubMed | CAS
  38. Ryan, C. J. et al. Hierarchical modularity and the evolution of genetic interactomes across species. Mol. Cell 46, 691–704 (2012). Article | PubMed | CAS
  39. McLellan, J. L. et al. Synthetic lethality of cohesins with PARPs and replication fork mediators. PLoS Genet. 8, e1002574 (2012). ArticlePubMed
  40. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001). ArticlePubMed | CAS
  41. Pan, X. et al. A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16, 487–496 (2004). Article | PubMed | CAS
  42. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016). Article | PubMed | CAS
  43. McManus, K. J., Barrett, I. J., Nouhi, Y. & Hieter, P. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc. Natl Acad. Sci. USA 106, 3276–3281 (2009). Article | PubMed
  44. Srivas, R. et al. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Mol. Cell 63, 514–525 (2016). Article | PubMed |​​​​​​​ CAS
  45. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegansNature 391, 806–811 (1998). Article |​​​​​​​ PubMed |​​​​​​​ CAS
  46. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001). Article | PubMed | CAS
  47. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002). ArticlePubMedCAS
  48. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004). Article | PubMed | CAS
  49. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004). Article | PubMed | CAS
  50. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA108, 12372–12377 (2011). Article | PubMed
  51. Vizeacoumar, F. J. et al. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol. Syst. Biol. 9, 696 (2013). Article | PubMed | CAS
  52. Bhinder, B. & Djaballah, H. Systematic analysis of RNAi reports identifies dismal commonality at gene-level and reveals an unprecedented enrichment in pooled shRNA screens. Comb. Chem. High Throughput Screen. 16, 665–681 (2013). ArticlePubMed | CAS
  53. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004). Article | PubMedCAS
  54. Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell 41, 733–746 (2011). Article | PubMed | CAS
  55. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003). Article | PubMedCAS
  56. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006). Article | PubMed | CAS
  57. Sigoillot, F. D. et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat. Methods 9, 363–366 (2012). Article | PubMed | CAS
  58. Buehler, E. et al. siRNA off-target effects in genome-wide screens identify signaling pathway members. Sci. Rep. 2, 428 (2012). Article | PubMed | CAS
  59. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014). Article | PubMed | CAS
  60. Bassik, M. C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009). Article | PubMed | CAS
  61. Downward, J. RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin. Cancer Res. 21, 1802–1809 (2015). Article | PubMed | CAS
  62. Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013). ArticlePubMed | CAS
  63. Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 533, 333–337 (2016). Article | PubMed | CAS
  64. Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016). ArticlePubMed | CAS
  65. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013). Article | PubMed | CAS
  66. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013). Article | PubMed
  67. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013). ArticlePubMed | CAS
  68. Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015). Article | PubMed | CAS
  69. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016). ArticlePubMedCAS
  70. Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016). Article | PubMedCAS
  71. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015). Article | PubMedCAS
  72. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015). Article | PubMed | CAS
  73. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016). PubMed 
  74. Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903 (2017). Article | PubMed | CAS
  75. Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015). Article | PubMed | CAS
  76. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitroeLife 5, e12677 (2016). Article | PubMed
  77. Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014). Article | PubMed | CAS
  78. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013). Article | PubMed | CAS
  79. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013). Article | PubMed | CAS
  80. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014). Article | PubMed | CAS
  81. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015). ArticlePubMed | CAS
  82. Wong, A. S. et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl Acad. Sci. USA 113, 2544–2549 (2016). Article | PubMed | CAS
  83. Kabadi, A. M., Ousterout, D. G., Hilton, I. B. & Gersbach, C. A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42, e147(2014). Article | PubMed |  CAS
  84. Sakuma, T., Nishikawa, A., Kume, S., Chayama, K. & Yamamoto, T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci. Rep. 4, 5400 (2014). ArticlePubMed | CAS
  85. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017). Article | PubMed
  86. Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017). Article | PubMed
  87. Wong, A. S., Choi, G. C., Cheng, A. A., Purcell, O. & Lu, T. K. Massively parallel high-order combinatorial genetics in human cells. Nat. Biotechnol. 33, 952–961 (2015). Article | PubMed | CAS
  88. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016). Article | PubMed | CAS
  89. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016). Article | PubMed |  CAS
  90. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896 (2016). Article | PubMed | CAS
  91. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017). Article | PubMed
  92. Leiserson, M. D., Wu, H. T., Vandin, F. & Raphael, B. J. CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer. Genome Biol. 16, 160 (2015). Article | PubMed | CAS
  93. Babur, O. et al. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations. Genome Biol. 16, 45 (2015). Article | PubMedCAS
  94. Zhang, F. et al. Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. J. Bioinform. Comput. Biol. 13, 1541002 (2015). ArticlePubMed
  95. Wappett, M. et al. Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs. BMC Genomics 17, 65 (2016). Article | PubMed
  96. Jackson, R. A. & Chen, E. S. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacol. Ther. 162, 69–85 (2016). Article | PubMed
  97. Jerby-Arnon, L. et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158, 1199–1209 (2014). Article | PubMed | CAS
  98. Guo, J., Liu, H. & Zheng, J. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res. 44, D1011–D1017 (2016). Article | PubMed
  99. Thoma, C. R. et al. A high-throughput-compatible 3D microtissue co-culture system for phenotypic RNAi screening applications. J. Biomol. Screen. 18, 1330–1337 (2013). Article | PubMed | CAS
  100. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015). PubMed |  CAS
  101. Bruna, A. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274 (2016). Article | PubMed | CAS
  102. Braun, C. J. et al. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc. Natl Acad. Sci. USA 113, E3892–E3900 (2016).
  103. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015). Article | PubMed | CAS
  104. Walcott, F. L., Patel, J., Lubet, R., Rodriguez, L. & Calzone, K. A. Hereditary cancer syndromes as model systems for chemopreventive agent development. Semin. Oncol. 43, 134–145 (2016). Article | PubMed
  105. Wu, X. & Lippman, S. M. An intermittent approach for cancer chemoprevention. Nat. Rev. Cancer 11, 879–885 (2011). Article | PubMed
  106. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005). Article | PubMed | CAS
  107. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005). Article | PubMed | CAS
  108. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009). Article | PubMed | CAS
  109. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011). Article | PubMed | CAS
  110. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015). Article | PubMed | CAS
  111. McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006). Article | PubMed | CAS
  112. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016). Article | PubMed | CAS
  113. Barber, L. J. et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 229, 422–429 (2013). Article | PubMed | CAS
  114. Ter Brugge, P. et al. Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. J. Natl Cancer Inst. 108, djw148 (2016). Article | PubMed
  115. Xu, G. et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544 (2015). Article | PubMed | CAS
  116. Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA 105, 17079–17084 (2008). Article | PubMed
  117. Knezevic, C. E. et al. Proteome-wide profiling of clinical PARP inhibitors reveals compound-specific secondary targets. Cell Chem. Biol. 23, 1490–1503 (2016). Article | PubMed
  118. Schiewer, M. J. & Knudsen, K. E. Transcriptional roles of PARP1 in cancer. Mol. Cancer Res. 12, 1069–1080 (2014). Article | PubMedCAS
  119. Burkle, A. & Virag, L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med.34, 1046–1065 (2013). Article | PubMed | CAS
  120. Murai, J. et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 13, 433–443 (2014). Article | PubMed | CAS
  121. Hopkins, T. A. et al. Mechanistic dissection of PARP1 trapping and the impact on in vivotolerability and efficacy of PARP inhibitors. Mol. Cancer Res. 13, 1465–1477 (2015). Article | PubMed | CAS
  122. Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol. 5, 387–393 (2011). Article | PubMed | CAS