Skip to main content
Top

05-07-2017 | Glioblastoma multiforme | Article

Pharmacotherapy of Glioblastoma: Established Treatments and Emerging Concepts

Journal: CNS Drugs

Authors: Enrico Franceschi, Santino Minichillo, Alba A. Brandes

Publisher: Springer International Publishing

Abstract

Glioblastoma is the most frequent malignant brain tumor and is characterized by poor prognosis, increased invasiveness, and high recurrence rates. Standard treatment for glioblastoma includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. Despite treatment advances, only 15–20% of glioblastoma patients survive to 5 years, and no therapies have demonstrated a durable survival benefit in recurrent disease. In the last 10 years, significant advances in knowledge of the biology and molecular pathology of the malignancy have opened the way to new treatment options. Clinical management of patients (pseudo-progressions, side effects of therapies, best supportive care, centralization in expertise care centers) has improved. In brain tumors, such as in other solid tumors, we have entered an era of immune-oncology. Immunotherapy seems to have an acceptable safety and tolerability profile in the recurrent setting and is under investigation in clinical trials in newly diagnosed glioblastoma patients. This review focuses on novel targeted therapies recently developed for the management of newly diagnosed and recurrent glioblastomas.
Literature
1.
Levin VA, et al. Superiority of post-radiotherapy adjuvant chemotherapy with CCNU, procarbazine, and vincristine (PCV) over BCNU for anaplastic gliomas: NCOG 6G61 final report. Int J Radiat Oncol Biol Phys. 1990;18(2):321–4.CrossRefPubMed
2.
Prados MD. Future directions in the treatment of malignant gliomas with temozolomide. Semin Oncol. 2000;27(3 Suppl 6):41–6.PubMed
3.
Prados MD, et al. Procarbazine, lomustine, and vincristine (PCV) chemotherapy for anaplastic astrocytoma: A retrospective review of radiation therapy oncology group protocols comparing survival with carmustine or PCV adjuvant chemotherapy. J Clin Oncol. 1999;17(11):3389–95.CrossRefPubMed
4.
Westphal M, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5(2):79–88.PubMedPubMedCentral
5.
Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefPubMed
6.
Chinot OL, Wick W, Cloughesy T. Bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(21):2049.CrossRefPubMed
7.
Sandmann T, et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol. 2015;33(25):2735–44.CrossRefPubMedPubMedCentral
8.
Gilbert MR, Sulman EP, Mehta MP. Bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(21):2048–49.
9.
Herrlinger U, et al. Bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine-DNA methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol. 2016;34(14):1611–9.CrossRefPubMed
10.
Stupp R, et al. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(16):2712–8.CrossRefPubMed
11.
Stupp R, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1100–8.CrossRefPubMed
12.
Nabors LB, et al. Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study. Neuro Oncol. 2015;17(5):708–17.CrossRefPubMedPubMedCentral
13.
Wick W, et al. Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res. 2016;22(19):4797–806.CrossRefPubMed
14.
Gilbert MR, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31(32):4085–91.CrossRefPubMedPubMedCentral
15.
Hegi ME, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.CrossRefPubMed
16.
Chen R, Cohen AL, Colman H. Targeted therapeutics in patients with high-grade gliomas: past, present, and future. Curr Treat Options Oncol. 2016;17(8):42.CrossRefPubMed
17.
Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13(5):345.CrossRefPubMedPubMedCentral
18.
Louis DN, et al. The World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefPubMed
19.
Brandes AA, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.CrossRefPubMed
20.
Wick K, et al. Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro Oncol. 2016;18(10):1434–41.CrossRefPubMed
21.
Brandes AA, et al. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation With MGMT promoter methylation status. J Clin Oncol. 2009;27(8):1275–9.CrossRefPubMed
22.
Schiffgens S, et al. Sex-specific clinicopathological significance of novel (Frizzled-7) and established (MGMT, IDH1) biomarkers in glioblastoma. Oncotarget. 2016;7(34):55169–80.CrossRefPubMedPubMedCentral
23.
Regelsberger J, Hagel C, Emami P, Ries T, Heese O, Westphal M. Risk analysis of severe myelotoxicity with temozolomide: the effects of clinical and genetic factors. Neuro Oncol. 2009;11(6):825–32. doi:10.​1215/​15228517-2008-120.CrossRef
24.
Jen JF, et al. Population pharmacokinetics of temozolomide in cancer patients. Pharm Res. 2000;17(10):1284–9.CrossRefPubMed
25.
Keime-Guibert F, Chinot OL, Taillanndier L, et al. Phase III study comparing radiotherapy with supportive care in older patients with newly diagnosed anaplastic astrocyotmas (AA) og glioblastoma multiforme (GBM): an ANOCEF group trial. Neuro Oncol. 2005;7(3):349.
26.
Roa W, et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol. 2004;22(9):1583–8.CrossRefPubMed
27.
Wick W, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012;13(7):707–15.CrossRefPubMed
28.
Malmström A, Grønberg BH, Marosi C, Nordic Clinical Brain Tumour Study Group (NCBTSG), et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–26.CrossRefPubMed
29.
JR Perry, et al. A randomized phase III study of temozolomide and short-course radiation vs. short-course radiation alone in the treatment of newly diagnosed glioblastoma in elderly patients. CCTG CE.6, EORTC 26062-22061, TROG 08.02. ASCO 2016.
30.
Brandes AA, et al. Pattern of care and effectiveness of treatment for glioblastoma patients in the real world: results from a prospective population-based registry. Could survival differ in a high-volume center? Neurooncol Pract. 2014;1(4):166–71.PubMedPubMedCentral
31.
Holland KD. Efficacy, pharmacology, and adverse effects of antiepileptic drugs. Neurol Clin. 2001;19(2):313–45.CrossRefPubMed
32.
Oberndorfer S, et al. P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol. 2005;72(3):255–60.CrossRefPubMed
33.
Wen PY, Marks PW. Medical management of patients with brain tumors. Curr Opin Oncol. 2002;14(3):299–307.CrossRefPubMed
34.
Brandes AA, et al. Incidence of risk of thromboembolism during treatment high-grade gliomas: a prospective study. Eur J Cancer. 1997;33(10):1592–6.CrossRefPubMed
35.
Dietrich J, et al. Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharmacol. 2011;4(2):233–42.CrossRefPubMedPubMedCentral
36.
Brandes AA, et al. Fotemustine as second-line treatment for recurrent or progressive glioblastoma after concomitant and/or adjuvant temozolomide: a phase II trial of Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Cancer Chemoth Pharmacol. 2009;64(4):769–75.
37.
Brada M, Stenning S, Gabe R, et al. Temozolomide versus procarbazine, lomustine, and vincristine in recurrent high-grade glioma. J Clin Oncol. 2010;28:4601–8.CrossRefPubMed
38.
Brandes AA, et al. Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from gruppo italiano cooperativo di neuro-oncologia (GICNO). Br J Cancer. 2006;95(9):1155–60.CrossRefPubMedPubMedCentral
39.
Wick A, et al. Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J Clin Oncol. 2007;25:3357–61.CrossRefPubMed
40.
Perry RJ, et al. Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol. 2010;28:2051–7.CrossRefPubMed
41.
Taal W, et al. Dose dense 1 week on/1 week off temozolomide in recurrent glioma: a retrospective study. J Neurooncol. 2012;108(1):195–200.CrossRefPubMedPubMedCentral
42.
Norden AD, et al. Phase 2 study of dose-intense temozolomide in recurrent glioblastoma. Neuro Oncol. 2013;15(7):930–5. doi:10.​1093/​neuonc/​not040 (Epub 2013 Apr 3).CrossRefPubMedPubMedCentral
43.
Omuro A, et al. Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma. Neuro Oncol. 2013;15(2):242–50. doi:10.​1093/​neuonc/​nos295 (Epub 2012 Dec 14).CrossRefPubMed
44.
Taal W, et al. A randomized phase II study of bevacizumab versus bevacizuma bplus lomustine versus lomustine single agent in recurrent glioblastoma: the Dutch BELOB study. J Clin Oncol. 2013;31(suppl; abstr 2001).
45.
Brandes AA, Finocchiaro G, Zagonel V, et al. AVAREG: a phase II, randomized, non comparative study of fotemustine or bevacizumab for patients with recurrent glioblastoma. Neuro Oncol. 2016;18(9):1304–12.CrossRefPubMed
46.
Brandes AA, et al. Early tumour shrinkage as a survival predictor in patients with recurrent glioblastoma treated with bevacizumab in the AVAREG randomized phase II study. Oncotarget. 2017;. doi:10.​18632/​Oncotarget.​15735.PubMedCentral
47.
van den Bent M, et al. EORTC 26101 phase III trial exploring the combination of bevacizumab and lomustine versus lomustine in patients with first progression of a glioblastoma. Neuro Oncol. 2016;18(suppl_4):iv1–iv2. doi:10.​1093/​neuonc/​now188.​002
48.
Gil-Gil Miguel J, Mesia C, Rey M, et al. Bevacizumab for the treatment of glioblastoma. Clin Med Insights Oncol. 2013;7:123–35.CrossRefPubMedPubMedCentral
49.
Glas M, et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol. 2009;27(8):1257–61.CrossRefPubMed
50.
Herrlinger U, et al. Phase II trial of lomustine plus temozolomide chemotherapy in addition to radiotherapy in newly diagnosed glioblastoma: UKT-03. J Clin Oncol. 2006;24(27):4412–7.CrossRefPubMed
51.
Phase III trial of lomustine/temozolomide combination therapy vs. standard therapy for newly diagnosed MGMT-methylated glioblastoma patients (CeTeG)—NCT01149109-2009-011252-22 (EudraCT Number).
52.
Stupp R, Wong ET, Kanner AA, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48(14):2192–202.CrossRefPubMed
53.
Stupp R, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43.CrossRefPubMed
54.
Mittal S, et al. Alternating electric tumor treating fields for treatment of glioblastoma: rationale, preclinical, and clinical studies. J Neurosurg. 2017;. doi:10.​3171/​2016.​9.​JNS16452.
55.
Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentral
56.
Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.CrossRefPubMed
57.
Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRefPubMed
58.
Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17:1064–75.CrossRefPubMed
59.
Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991;28:254–60.CrossRefPubMed
60.
Barker CF, Billingham RE. Immunologically privileged sites. Adv Immunol. 1977;25:1–54.PubMed
61.
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.CrossRefPubMedPubMedCentral
62.
Carson MJ, Doose JM, Melchior B, et al. CNS immune privilege: hiding in plain sight. Immunol Rev. 2006;213:48–65.CrossRefPubMedPubMedCentral
63.
Muller C, Holtschmidt J, Auer M, et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med. 2014;6:247ra101.CrossRefPubMed
64.
Zalutsky MR, Moseley RP, Coakham HB, et al. Pharmacokinetics and tumor localization of 131I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res. 1989;49:2807–13.PubMed
65.
Preusser M, Lim M, Hafler DA, et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 2015;11:504–14.CrossRefPubMedPubMedCentral
66.
Raizer J. Issues in developing drugs for primary brain tumors: barriers and toxicities. Toxicol Pathol. 2011;39:152–7.CrossRefPubMed
67.
Dranoff G. Immunotherapy at large: balancing tumor immunity and inflammatory pathology. Nat Med. 2013;19:1100–1.CrossRefPubMedPubMedCentral
68.
Heimberger AB, Sampson JH. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro Oncol. 2011;13:3–13.CrossRefPubMed
69.
Okada H, Weller M, Huang R, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16:e534–42.CrossRefPubMedPubMedCentral
70.
Kebir S, et al. Dynamic O-(2-[18F]fluoroethyl)-l-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases. Neuro Oncol. 2016;18(10):1462–4.CrossRefPubMed
71.
David A, Reardon JHS, et al. Safety and activity of nivolumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): updated results from checkmate-143. J Clin Oncol. 2016;2016:34.
72.
Reardon DA, Omuro A, Brandes AA, et al. Randomized phase 3 study evaluating the efficacy and safety of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: checkmate 143. Neuro Oncol. 2017;19(suppl_3):iii21. doi:10.​1093/​neuonc/​nox036.​071.CrossRef
73.
Omuro A, Vlahovic G, Baehring J, et al. Nivolumab combined with radiotherapy with or without temozolomide in patients with newly diagnosed glioblastoma: results from phase 1 safety cohorts in checkmate 143. Neuro Oncol. 2016;18:vi21.CrossRef
74.
Weller M, Roth P, Preusser M, Wick W, Reardon DA, Platten M, Sampson JH. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol. 2017. doi:10.​1038/​nrneurol.​2017.​64.PubMed
75.
Wakimoto H, Tanaka S, Curry WT, et al. Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin Cancer Res. 2014;20(11):2898–909.CrossRefPubMedPubMedCentral
76.
Tateishi K, Wakimoto H, Iafrate AJ, et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell. 2015;28(6):773–84.CrossRefPubMedPubMedCentral
77.
Duke Comprehensive Cancer Center, Duke University. Patients with IDH1 positive recurrent grade II glioma enrolled in a safety and immunogenicity study of tumor-specific peptide vaccine. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000. https://​clinicaltrials.​gov/​ct2/​show/​NCT02193347. Accessed Mar 23 2016.
78.
National Center for Tumor Diseases, Heidelberg. Targeting IDH1R132H in WHO Grade III-IV IDH1R132H-mutated gliomas by a peptide vaccine—a phase I safety, tolerability and immunogenicity multicenter trial (NOA-16). In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000.