Skip to main content
Top

18-07-2017 | Colorectal cancer | Article

Antiangiogenic tyrosine kinase inhibitors in colorectal cancer: is there a path to making them more effective?

Journal: Cancer Chemotherapy and Pharmacology

Authors: Thomas B. Karasic, Mark A. Rosen, Peter J. O’Dwyer

Publisher: Springer Berlin Heidelberg

Abstract

Antiangiogenic therapy has a proven survival benefit in metastatic colorectal cancer. Inhibition of the VEGF pathway using a variety of extracellular antibody approaches has clear benefit in combination with chemotherapy, while intracellular blockade using tyrosine kinase inhibitors (TKIs) such as sorafenib and regorafenib has had more limited success. Pharmacodynamic modeling using modalities such as DCE-MRI indicates potent antiangiogenic effects of these TKIs, yet numerous combination therapies, primarily with chemotherapy, have failed to demonstrate an additive benefit. The sole comparative study of a single agent TKI against placebo showed a survival benefit of regorafenib in patients with advanced, refractory disease. Preclinical data demonstrate synergy between antiantiogenic TKIs and targeted interventions including autophagy inhibition, and together with a renewed effort to define markers of susceptibility, such combinations may be a way to improve the limited efficacy of this once-promising drug class.
Literature
1.
Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342CrossRefPubMed
2.
Engel CJ, Bennett ST, Chambers AF et al (1996) Tumor angiogenesis predicts recurrence in invasive colorectal cancer when controlled for Dukes staging. Am J Surg Pathol 20(10):1260–1265CrossRefPubMed
3.
Takebayashi Y, Aklyama S, Yamada K et al (1996) Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma. Cancer 78(2):226–231CrossRefPubMed
4.
Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147CrossRefPubMedPubMedCentral
5.
Bennouna J, Sastre J, Arnold D et al (2013) Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 14(1):29–37CrossRefPubMed
6.
Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62CrossRefPubMed
7.
Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887CrossRefPubMed
8.
Yao KS, Gietema JA, Shida S et al (2005) In vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo. Br J Cancer 93:1356–1363CrossRefPubMedPubMedCentral
9.
Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312(5777):1171–1175CrossRefPubMed
10.
Selvakumaran M, Yao KS, O’Dwyer PJ (2008) Antitumor effect of the angiogenesis inhibitor bevacizumab is dependent on susceptibility of tumors to hypoxia-induced apoptosis. Biochem Pharmacol 75:627–638CrossRefPubMed
11.
Wenes M, Shang M, Di Matteo M et al (2016) Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 24(5):701–715CrossRefPubMed
12.
Thienpont B, Steinbacher J, Zhao H et al (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537(7618):63–68CrossRefPubMedPubMedCentral
13.
Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049CrossRefPubMedPubMedCentral
14.
Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662CrossRefPubMed
15.
Selvakumaran M, Amaravadi RK, Vasilevskaya IA, O’Dwyer PJ (2013) Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy. Clin Cancer Res 19(11):2995–3007CrossRefPubMed
16.
Maes H, Kuchnio A, Peric A et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26(2):190–206CrossRefPubMed
17.
Saltz LB, Clarke S, Díaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26(12):2013–2019CrossRefPubMed
18.
Van Cutsem E, Tabernero J, Lakomy R et al (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30(28):3499–3506CrossRefPubMed
19.
Tabernero J, Yoshino T, Cohn AL et al (2015) Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 16(5):499–508CrossRefPubMed
20.
Giantonio BJ, Catalano PJ, Meropol NJ et al (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25(12):1539–1544CrossRefPubMed
21.
Tang PA, Cohen SJ, Kollmannsberger C et al (2012) Phase II clinical and pharmacokinetic study of aflibercept in patients with previously treated metastatic colorectal cancer. Clin Cancer Res 18(21):6023–6031CrossRefPubMed
22.
Hecht JR, Trarbach T, Hainsworth JD et al (2011) Randomized, placebo-controlled, phase III study of first-line oxaliplatin-based chemotherapy plus PTK787/ZK 222584, an oral vascular endothelial growth factor receptor inhibitor, in patients with metastatic colorectal adenocarcinoma. J Clin Oncol 29(15):1997–2003CrossRefPubMed
23.
Van Cutsem E, Bajetta E, Valle J et al (2011) Randomized, placebo-controlled, phase III study of oxaliplatin, fluorouracil, and leucovorin with or without PTK787/ZK 222584 in patients with previously treated metastatic colorectal adenocarcinoma. J Clin Oncol 29(15):2004–2010CrossRefPubMed
24.
Cunningham D, Wong RP, D’Haens G et al (2013) Cediranib with mFOLFOX6 vs bevacizumab with mFOLFOX6 in previously treated metastatic colorectal cancer. Br J Cancer 108(3):493–502CrossRefPubMedPubMedCentral
25.
Schmoll HJ, Cunningham D, Sobrero A et al (2012) Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal cancer: a double-blind, randomized phase III study (HORIZON III). J Clin Oncol 30(29):3588–3595CrossRefPubMed
26.
Hoff PM, Hochhaus A, Pestalozzi BC et al (2012) Cediranib plus FOLFOX/CAPOX versus placebo plus FOLFOX/CAPOX in patients with previously untreated metastatic colorectal cancer: a randomized, double-blind, phase III study (HORIZON II). J Clin Oncol 30(29):3596–3603CrossRefPubMed
27.
Carrato A, Swieboda-Sadlej A, Staszewska-Skurczynska M et al (2013) Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: a randomized, phase III trial. J Clin Oncol 31(10):1341–1347CrossRefPubMed
28.
Grothey A, Allegra C (2012) Antiangiogenesis therapy in the treatment of metastatic colorectal cancer. Therap Adv Med Oncol 4(6):301–319CrossRef
29.
Grothey A, Van Cutsem E, Sobrero A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312CrossRefPubMed
30.
Wilhelm SM, Carter C, Tang L et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109CrossRefPubMed
31.
Wilhelm SM, Adnane L, Newell P et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140CrossRefPubMed
32.
Hotte SJ, Hirte HW (2002) BAY 43-9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des 8(25):2249–2253CrossRefPubMed
33.
Strumberg D, Voliotis D, Moeller JG et al (2002) Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43-9006 in patients with solid tumors. Int J Clin Pharmacol Ther 40(12):580–581CrossRefPubMed
34.
Strumberg D, Richly H, Hilger RA et al (2005) Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23(5):965–972CrossRefPubMed
35.
Veronese ML, Mosenkis A, Flaherty KT, Gallagher M, Stevenson JP, Townsend RR, O’Dwyer PJ (2006) Mechanisms of hypertension associated with BAY 43-9006. J Clin Oncol 24(9):1363–1369CrossRefPubMed
36.
Brose MS, Nutting CM, Jarzab B et al (2014) Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940):319–328CrossRefPubMedPubMedCentral
37.
Escudier B, Eisen T, Stadler WM et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27(20):3312–3318CrossRefPubMed
38.
Richly H, Henning BF, Kupsch P et al (2006) Results of a Phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol 17(5):866–873CrossRefPubMed
39.
Siu LL, Awada A, Takimoto CH et al (2006) Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res 12(1):144–151CrossRefPubMed
40.
Kupsch P, Henning BF, Passarge K et al (2005) Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer 5(3):188–196CrossRefPubMed
41.
Flaherty KT, Schiller J, Schuchter LM et al (2008) A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res 14(15):4836–4842CrossRefPubMed
42.
Azad N, Dasari A, Arcaroli J et al (2013) Phase I pharmacokinetic and pharmacodynamic study of cetuximab, irinotecan and sorafenib in advanced colorectal cancer. Invest New Drugs 31(2):345–354CrossRefPubMed
43.
Samalin E, Bouché O, Thézenas S et al (2014) Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial. Br J Cancer 110(5):1148–1154CrossRefPubMedPubMedCentral
44.
Maki RG, D’Adamo DR, Keohan ML et al (2009) Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol 27(19):3133–3140CrossRefPubMedPubMedCentral
45.
Ott PA, Hamilton A, Min C et al (2010) A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One 5(12):e15588CrossRefPubMedPubMedCentral
46.
Villarroel MC, Pratz KW, Xu L, Wright JJ, Smith BD, Rudek MA (2012) Plasma protein binding of sorafenib, a multi kinase inhibitor: in vitro and in cancer patients. Invest New Drugs 30(6):2096–2102CrossRefPubMed
47.
Flaherty KT, Manola JB, Pins M et al (2015) BEST: a Randomized Phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma–a trial of the ECOG-ACRIN Cancer Research Group (E2804). J Clin Oncol 33(21):2384–2391CrossRefPubMedPubMedCentral
48.
Azad NS, Posadas EM, Kwitkowski VE et al (2008) Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol 26(22):3709–3714CrossRefPubMed
49.
Galanis E, Anderson SK, Lafky JM et al (2013) Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): a north central cancer treatment group trial. Clin Cancer Res 19(17):4816–4823CrossRefPubMed
50.
Flaherty KT, Rosen MA, Heitjan DF et al (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7(4):496–501CrossRefPubMed
51.
Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26(28):4572–4578CrossRefPubMedPubMedCentral
52.
Meyer JM, Perlewitz KS, Hayden JB et al (2013) Phase I trial of preoperative chemoradiation plus sorafenib for high-risk extremity soft tissue sarcomas with dynamic contrast-enhanced MRI correlates. Clin Cancer Res 19(24):6902–6911CrossRefPubMed
53.
Kloos RT, Ringel MD, Knopp MV et al (2009) Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 27(10):1675–1684CrossRefPubMedPubMedCentral
54.
Lam ET, Ringel MD, Kloos RT et al (2010) Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 28(14):2323–2330CrossRefPubMedPubMedCentral
55.
Kelly RJ, Rajan A, Force J et al (2011) Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin Cancer Res 17(5):1190–1199CrossRefPubMedPubMedCentral
56.
Kang HC, Tan KS, Keefe SM et al (2013) MRI assessment of early tumor response in metastatic renal cell carcinoma patients treated with sorafenib. AJR Am J Roentgenol 200(1):120–126CrossRefPubMed
57.
Horger M, Lauer UM, Schraml C et al (2009) Early MRI response monitoring of patients with advanced hepatocellular carcinoma under treatment with the multikinase inhibitor sorafenib. BMC Cancer. 9:208CrossRefPubMedPubMedCentral
58.
Lewin M, Fartoux L, Vignaud A et al (2011) The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol 21(2):281–290CrossRefPubMed
59.
Morgan B, Thomas AL, Drevs J et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21(21):3955–3964CrossRefPubMed
60.
Mross K, Fasol U, Frost A et al (2009) DCE-MRI assessment of the effect of vandetanib on tumor vasculature in patients with advanced colorectal cancer and liver metastases: a randomized phase I study. J Angiogenes Res 1:5CrossRefPubMedPubMedCentral
61.
Strumberg D, Scheulen ME, Schultheis B et al (2012) Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 106(11):1722–1727CrossRefPubMedPubMedCentral
62.
Connor JP, Carano RA, Clamp AR et al (2009) Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin Cancer Res 15(21):6674–6682CrossRef
63.
Bradley DP, Tessier JL, Checkley D et al (2008) Effects of AZD2171 and vandetanib (ZD6474, Zactima) on haemodynamic variables in an SW620 human colon tumour model: an investigation using dynamic contrast-enhanced MRI and the rapid clearance blood pool contrast agent, P792 (gadomelitol). NMR Biomed 21(1):42–52CrossRefPubMed
64.
Abou-Elkacem L, Arns S, Brix G et al (2013) Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther 12(7):1322–1331CrossRefPubMed
65.
Peña C, Lathia C, Shan M et al (2010) Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III Treatment Approaches in Renal Cancer Global Evaluation Trial. Clin Cancer Res 16(19):4853–4863CrossRefPubMed
66.
Haas NB, Manola J, Ky B et al (2015) Effects of adjuvant sorafenib and sunitinib on cardiac function in renal cell carcinoma patients without overt metastases: results from ASSURE, ECOG 2805. Clin Cancer Res 21(18):4048–4054CrossRefPubMedPubMedCentral
67.
Jones RL, Bendell JC, Smith DC et al (2015) A phase I open-label trial evaluating the cardiovascular safety of regorafenib in patients with advanced cancer. Cancer Chemother Pharmacol 76(4):777–784CrossRefPubMed
68.
Tabernero J, Garcia-Carbonero R, Cassidy J et al (2013) Sorafenib in combination with oxaliplatin, leucovorin, and fluorouracil (modified FOLFOX6) as first-line treatment of metastatic colorectal cancer: the RESPECT trial. Clin Cancer Res 19(9):2541–2550CrossRefPubMed
69.
Hecht JR, Mitchell E, Chidiac T et al (2009) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27(5):672–680CrossRefPubMed
70.
Saltz L, Badarinath S, Dakhil S et al (2012) Phase III trial of cetuximab, bevacizumab, and 5-fluorouracil/leucovorin vs. FOLFOX-bevacizumab in colorectal cancer. Clin Colorectal Cancer 11(2):101–111CrossRefPubMed
71.
Martinelli E, Troiani T, Morgillo F et al (2010) Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clin Cancer Res 16(20):4990–5001CrossRefPubMed
72.
Do K, Cao L, Kang Z et al (2015) A phase II study of sorafenib combined with cetuximab in EGFR-expressing, KRAS-mutated metastatic colorectal cancer. Clin Colorectal Cancer 14(3):154–161CrossRefPubMed
73.
Wilhelm SM, Dumas J, Adnane L et al (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129(1):245–255CrossRefPubMed
74.
Monk BJ, Poveda A, Vergote I et al (2014) Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15(8):799–808CrossRefPubMed
75.
Mross K, Frost A, Steinbild S et al (2012) A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res 18(9):2658–2667CrossRefPubMed
76.
Li J, Qin S, Xu R et al (2015) Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 16(6):619–629CrossRefPubMed
77.
Mayer RJ, Van Cutsem E, Falcone A et al (2015) Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 372(20):1909–1919CrossRefPubMed
78.
Schultheis B, Folprecht G, Kuhlmann J, Ehrenberg R, Hacker UT, Köhne CH, Kornacker M, Boix O, Lettieri J, Krauss J, Fischer R, Hamann S, Strumberg D, Mross KB (2013) Regorafenib in combination with FOLFOX or FOLFIRI as first- or second-line treatment of colorectal cancer: results of a multicenter, phase Ib study. Ann Oncol 24(6):1560–1567CrossRefPubMedPubMedCentral
79.
Argilés G, Saunders MP, Rivera F et al (2015) Regorafenib plus modified FOLFOX6 as first-line treatment of metastatic colorectal cancer: a phase II trial. Eur J Cancer 51(8):942–949CrossRefPubMed
80.
de Gramont A, Figer A, Seymour M et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18(16):2938–2947CrossRefPubMed
81.
Venook AP, Niedzwiecki D, Lenz HJ et al (2014) CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol 32(18):LBA3CrossRef
82.
Heinemann V, von Weikersthal LF, Decker T et al (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1065–1075CrossRefPubMed
83.
Zhao D, Zhai B, He C et al (2014) Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell Signal 26(5):1030–1039CrossRefPubMed
84.
Hoh CK, Burris HA 3rd, Bendell JC et al (2014) Intermittent dosing of axitinib combined with chemotherapy is supported by (18)FLT-PET in gastrointestinal tumours. Br J Cancer 110(4):875–881CrossRefPubMedPubMedCentral
85.
Heim M, Scharifi M, Zisowsky J et al (2005) The Raf kinase inhibitor BAY 43-9006 reduces cellular uptake of platinum compounds and cytotoxicity in human colorectal carcinoma cell lines. Anticancer Drugs 16(2):129–136CrossRefPubMed
86.
Knievel J, Schulz WA, Greife A et al (2014) Multiple mechanisms mediate resistance to sorafenib in urothelial cancer. Int J Mol Sci 15(11):20500–20517CrossRefPubMedPubMedCentral
87.
Haas NB, Manola J, Uzzo RG et al (2016) Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 387(10032):2008–2016CrossRefPubMedPubMedCentral
88.
Ravaud A, Motzer RJ, Pandha HS et al (2016) Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N Engl J Med 375(23):2246–2254CrossRefPubMed
89.
Tran MA, Smith CD, Kester M, Robertson GP (2008) Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 14(11):3571–3581CrossRefPubMed
90.
Lasithiotakis KG, Sinnberg TW, Schittek B et al (2008) Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol 128(8):2013–2023CrossRefPubMed
91.
Ricci MS, Kim SH, Ogi K et al (2007) Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12(1):66–80CrossRefPubMed
92.
Kim SH, Ricci MS, El-Deiry WS (2008) Mcl-1: a gateway to TRAIL sensitization. Cancer Res 68(7):2062–2064CrossRefPubMed
93.
Yu C, Friday BB, Lai JP et al (2006) Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 5(9):2378–2387CrossRefPubMed
94.
Cabrera R, Ararat M, Xu Y et al (2013) Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma. Cancer Immunol Immunotherap. doi:10.​1007/​s00262-012-1380-8
95.
Park MA, Reinehr R, Häussinger D et al (2010) Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells. Mol Cancer Ther 9(8):2220–2231CrossRefPubMedPubMedCentral
96.
Carr BI, Cavallini A, Lippolis C et al (2013) Fluoro-Sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence, and recovery. J Cell Physiol 228(2):292–297CrossRefPubMedPubMedCentral
97.
O’Hara MH, Karasic TB, Vasilevskaya I et al (2017) Phase II trial of the autophagy inhibitor hydroxychloroquine with FOLFOX and bevacizumab in front line treatment of metastatic colorectal cancer. J Clin Oncol 35(15):3545
98.
Mahalingam D, Mita M, Sarantopoulos J et al (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10(8):1403–1414CrossRefPubMedPubMedCentral