CC BY-NC-ND 4.0 · Klin Padiatr 2024; 236(02): 73-79
DOI: 10.1055/a-2233-1243
Review

Pulmonary Alveolar Proteinosis and new therapeutic concepts

Pulmonale Aveolar-Proteinose und neue therapeutische Konzepte
Claudio Rodriguez Gonzalez*
1   Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
,
Hannah Schevel*
1   Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
,
Gesine Hansen
1   Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
2   German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
3   Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
,
Nicolaus Schwerk
1   Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
2   German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
,
Nico Lachmann
1   Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
2   German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
3   Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
4   Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
› Author Affiliations
Fundref Information HORIZON EUROPE European Research Council — http://dx.doi.org/10.13039/100019180; iPSC2Therapy 852178 Deutsche Forschungsgemeinschaft — http://dx.doi.org/10.13039/501100001659; EXC 2155 - project number 390874280

Abstract

Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.

Zusammenfassung

Pulmonale Alveolar Proteinose (PAP) ist ein Überbegriff für ein pulmonales Syndrom, das durch die übermäßige Akkumulation von Surfactant in den Lungen von betroffenen Patienten gekennzeichnet ist. PAP ist eine seltene Erkrankung, die sowohl Kinder als auch Erwachsene betrifft und deren Prävalenz und Inzidenz stark zwischen verschiedenen Ländern variiert. Obwohl die PAP eine seltene Erkrankung ist, so ist diese Krankheit ein gutes Beispiel wie Fortschritte in der modernen Medizin zu neuen therapeutischen Ansätzen und veränderten Methoden und Techniken in der genetischen Diagnostik führen, welches schlussendlich die Lungenfunktion der Patienten verbessern und somit eine höhere Lebenserwartung und gesteigerte Lebensqualität der Patienten ermöglichen. Zum besseren Verständnis in der Krankheitsentstehung haben aktuelle Technologien wie neuste Genomsequenzierung, moderne Gentherapieansätze, Möglichkeiten der Stammzellgewinnung sowie neuste Erkenntnisse in der Ontogenese von Immunzellen wie beispielsweise Makrophagen, maßgeblich dazu beigetragen die Lebensqualität von Patienten zu verbessern. Damit wurde der Weg für neue therapeutische Ansätze in der Behandlung von PAP geebnet, aber auch ein großer Beitrag zum allgemeinen wissenschaftlichen Verständnis erbracht. Im Bereich der PAP und als wesentliche Grundlage in der Krankheitsentstehung haben sich klassische, aus Monozyten differenzierte Makrophagen als wichtiger Wächter und Modulator der angeborenen Immunabwehr etabliert. Darüber hinaus sind auch gewebespezifische Makrophagen (tissue resident macrophages, TRM) in nahezu allen Geweben, so auch der Lunge, des menschlichen Körpers zu finden und gewinnen im medizinischen Kontext zunehmend an Bedeutung. So spielen beispielsweise die Alveolar-Makrophagen, die im broncho-alveolären Raum angesiedelt sind, eine tragende Rolle in der Pathophysiologie von PAP sowie weiteren Lungenerkrankungen. Nicht nur in der Behandlung von PAP sind daher die neuen Erkenntnisse über die Funktionsweise und mögliche Funktionseinschränkungen der Alveolar-Makrophagen wegweisend für neue Behandlungskonzepte, sondern bieten auch große Chancen für moderne Therapieansätze in der Behandlung von weiteren Krankheiten in denen Makrophagen relevant zur Krankheitsentstehung beitragen. Aus diesem Grund werden in dieser Übersichtsarbeit die neuesten wissenschaftlichen Erkenntnisse über die verschiedenen Formen von PAP sowie aktuelle präklinische Untersuchungen im Kontext von PAP zusammentragen und die neuen Behandlungsmöglichkeiten vorstellen.

* Authors contributed equally




Publication History

Received: 02 November 2023
Received: 28 November 2023

Accepted: 15 December 2023

Article published online:
29 January 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kelly A, McCarthy C. “Pulmonary Alveolar Proteinosis Syndrome,”. Semin Respir Crit Care Med 2020; 41: 288-298 DOI: 10.1016/B978-1-4557-3383-5.00070-1.
  • 2 Veldhuizen R, Nag K, Orgeig S. et al. “The role of lipids in pulmonary surfactant,”. Biochim. Biophys. Acta - Mol. Basis Dis. 1998; 1408: 90-108 DOI: 10.1016/S0925-4439(98)00061-1.
  • 3 Ikegami M. et al. “Surfactant granulocyte rnetabolism in transgenic mice after stimulating factor ablation,”. Am J Physiol 1996; 270: L650-L658
  • 4 Reed JA, Ikegami M, Robb L. et al “Distinct changes in pulmonary surfactant homeostasis in common β-chain- and GM-CSF-deficient mice,”. Am. J. Physiol. - Lung Cell. Mol. Physiol. 2000; 278 22-6 1164-1171 DOI: 10.1152/ajplung.2000.278.6.l1164.
  • 5 Inoue Y. et al. “Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan,”. Am. J. Respir. Crit. Care Med. 2008; 177: 752-762 DOI: 10.1164/rccm.200708-1271OC.
  • 6 Seymour JF, Presneill JJ. “Pulmonary alveolar proteinosis: Progress in the first 44 years,”. Am. J. Respir. Crit. Care Med. 2002; 166: 215-235 DOI: 10.1164/rccm.2109105.
  • 7 McCarthy C, Avetisyan R, Carey BC. et al. “Prevalence and healthcare burden of pulmonary alveolar proteinosis,”. Orphanet J. Rare Dis 2018; 1-5 DOI: 10.1186/s13023-018-0846-y.
  • 8 Watanabe S, Itoh T, Arai K. “Roles of JAK kinases in human GM-CSF receptor signal transduction,”. J. Allergy Clin. Immunol. 1996; 98 PART 2 DOI: 10.1016/S0091-6749(96)70065-9.
  • 9 Lehtonen A, Matikainen S, Miettinen M. et al “induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation,”. J. Leukoc. Biol. 2002; 71 no. March 511-519
  • 10 Shibata Y, Berclaz PY, Chroneos ZC. et al. “GM-CSF regulates alveolar macrophage differentiation and innate. immunity in the lung through PU.1,” Immunity 2001; 15: 557-567 DOI: 10.1016/S1074-7613(01)00218-7.
  • 11 Schneider C, Nobs SP, Kurrer M. et al. “Induction of the nuclear receptor PPAR-γ 3 by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages,”. Nat. Immunol. 2014; 15: 1026-1037 DOI: 10.1038/ni.3005.
  • 12 Sallese A. et al. “Targeting cholesterol homeostasis in lung diseases,”. Sci. Rep. 2017; 7: 1-14 DOI: 10.1038/s41598-017-10879-w.
  • 13 Uchida K. et al. “High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis,”. Blood 2004; 103: 1089-1098 DOI: 10.1182/blood-2003-05-1565.
  • 14 Kitamura T. et al. “Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor,”. J. Exp. Med. 1999; 190: 875-880 DOI: 10.1084/jem.190.6.875.
  • 15 Beccaria M. et al. “Long-term durable benefit after whole lung lavage in pulmonary alveolar proteinosis,”. Eur. Respir. J. 2004; 23: 526-531 DOI: 10.1183/09031936.04.00102704.
  • 16 Jehn LB, Bonella F. “Pulmonary alveolar proteinosis - Current and future therapeutical strategies,”. Curr. Opin. Pulm. Med. 2023; 29: 465-474 DOI: 10.1097/MCP.0000000000000982.
  • 17 Trapnell BC. et al. “Inhaled Molgramostim Therapy in Autoimmune Pulmonary Alveolar Proteinosis,”. N. Engl. J. Med. 2020; 383: 1635-1644 DOI: 10.1056/nejmoa1913590.
  • 18 Tazawa R. et al. “Inhaled GM-CSF for Pulmonary Alveolar Proteinosis,”. N. Engl. J. Med. 2019; 381: 923-932 DOI: 10.1056/nejmoa1816216.
  • 19 Suzuki T. et al. “Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations,”. Eur. Respir. J. 2011; 37: 201-204 DOI: 10.1183/09031936.00090610.
  • 20 Griese M. et al. “Autoimmune pulmonary alveolar proteinosis in children,”. ERJ Open Res 2022; 8: 1-7 DOI: 10.1183/23120541.00701-2021.
  • 21 Suzuki T. et al. “Hereditary pulmonary alveolar proteinosis: Pathogenesis, presentation, diagnosis, and therapy,”. Am. J. Respir. Crit. Care Med. 2010; 182: 1292-1304 DOI: 10.1164/rccm.201002-0271OC.
  • 22 Martinez-Moczygemba M. et al. “Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRα gene in the X chromosome pseudoautosomal region 1,”. J. Exp. Med. 2008; 205: 2711-2716 DOI: 10.1084/jem.20080759.
  • 23 Tanaka T. et al. “Adult-onset hereditary pulmonary alveolar proteinosis caused by a single-base deletion in CSF2RB,”. J. Med. Genet. 2011; 48: 205-209 DOI: 10.1136/jmg.2010.082586.
  • 24 Ito M. et al. “Elderly-onset hereditary pulmonary alveolar proteinosis and its cytokine profile,”. BMC Pulm. Med. 2017; 17: 1-7 DOI: 10.1186/s12890-017-0382-x.
  • 25 Sakagami T. et al. “Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates,”. Am. J. Respir. Crit. Care Med. 2010; 182: 49-61 DOI: 10.1164/rccm.201001-0008OC.
  • 26 Hayashida K, Kitamura T, Gorman DM. et al. “Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor,”. Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 9655-9659 DOI: 10.1073/pnas.87.24.9655.
  • 27 Chen Y, Li F, Hua M. et al “Role of GM-CSF in lung balance and disease,”. Front. Immunol. 2023; 14 no. April 1-9 DOI: 10.3389/fimmu.2023.1158859.
  • 28 Lachmann N. et al. “Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis,”. Am. J. Respir. Crit. Care Med. 2014; 189: 167-182 DOI: 10.1164/rccm.201306-1012OC.
  • 29 Ishii H. et al. “Clinical features of secondary pulmonary alveolar proteinosis: pre-mortem cases in Japan,”. Eur. Respir. J. 2011; 37: 465-468 DOI: 10.1183/09031936.00070410.
  • 30 Zhang D. et al. “Secondary pulmonary alveolar proteinosis: A single-center retrospective study (a case series and literature review),”. BMC Pulm. Med. 2018; 18: 1-7 DOI: 10.1186/s12890-018-0590-z.
  • 31 Ladeb S, Fleury-Feith J, Escudier E. et al. “Secondary alveolar proteinosis in cancer patients,”. Support. Care Cancer 1996; 4: 420-426 DOI: 10.1007/BF01880639.
  • 32 Philippot Q. et al. “Secondary pulmonary alveolar proteinosis after lung transplantation: A single-centre series,”. Eur. Respir. J. 2017; 49 DOI: 10.1183/13993003.01369-2016.
  • 33 Griese M. et al. “GATA2 deficiency in children and adults with severe pulmonary alveolar proteinosis and hematologic disorders,”. BMC Pulm. Med. 2015; 15: 1-8 DOI: 10.1186/s12890-015-0083-2.
  • 34 Israel RH, Magnussen CR. “Are AIDS patients at risk for pulmonary alveolar proteinosis?,”. Chest 1989; 96: 641-642 DOI: 10.1378/chest.96.3.641.
  • 35 Patiroglu T, Akyildiz B, Patiroglu TE. et al. “Recurrent pulmonary alveolar proteinosis secondary to agammaglobulinemia,”. Pediatr. Pulmonol. 2008; 43: 710-713 DOI: 10.1002/ppul.20818.
  • 36 Cuellar-Rodriguez J. et al. “Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency,”. Blood 2011; 118: 3715-3720 DOI: 10.1016/j.bbmt.2014.08.004.
  • 37 Fukuno K. et al. Successful cord blood transplantation for myelodysplastic syndrome resulting in resolution of pulmonary alveolar proteinosis [4],”. Bone Marrow Transplant. 2006; 38: 581-582 DOI: 10.1038/sj.bmt.1705491.
  • 38 Numata A. et al. “Successful therapy with whole-lung lavage and autologous peripheral blood stem cell transplantation for pulmonary alveolar proteinosis complicating acute myelogenous leukemia,”. Am. J. Hematol. 2006; 81: 107-109 DOI: 10.1002/ajh.20473.
  • 39 Hamvas A. et al. “Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1,”. Chest 2013; 144: 794-804 DOI: 10.1378/chest.12-2502.
  • 40 Bush A. et al. “European protocols for the diagnosis and initial treatment of interstitial lung disease in children,”. Thorax 2015; 70: 1078-1084 DOI: 10.1136/thoraxjnl-2015-207349.
  • 41 Campo I. et al. “Assessment and management of pulmonary alveolar proteinosis in a reference center,”. Orphanet J. Rare Dis 2013; 8: 1 DOI: 10.1186/1750-1172-8-40.
  • 42 Ben-Abraham R, Greenfeld A, Rozenman J. et al. “Pulmonary alveolar proteinosis: Step-by-step perioperative care of whole lung lavage procedure,”. Hear. Lung J. Acute Crit. Care 2002; 31: 43-49 DOI: 10.1067/mhl.2002.119831.
  • 43 Campo I. et al. “Whole lung lavage therapy for pulmonary alveolar proteinosis: A global survey of current practices and procedures,”. Orphanet J. Rare Dis 2016; 11: 1-10 DOI: 10.1186/s13023-016-0497-9.
  • 44 Griese M. “Pulmonary alveolar proteinosis: A comprehensive clinical perspective,”. Pediatrics 2017; DOI: 10.1542/peds.2017-0610.
  • 45 Luisetti M, Kadija Z, Mariani F. et al. “Therapy options in pulmonary alveolar proteinosis,”. Ther. Adv. Respir. Dis. 2010; 4: 239-248 DOI: 10.1177/1753465810378023.
  • 46 Tagawa T. et al. “Living-donor lobar lung transplantation for pulmonary alveolar proteinosis in an adult: Report of a case,”. Surg. Today 2011; 41: 1142-1144 DOI: 10.1007/s00595-010-4411-0.
  • 47 Palomar LM, Nogee LM, Sweet SC. et al. “Long-term outcomes after infant lung transplantation for surfactant protein B deficiency related to other causes of respiratory failure,”. J. Pediatr. 2006; 149: 548-553 DOI: 10.1016/j.jpeds.2006.06.004.
  • 48 Takaki M. et al. “Recurrence of pulmonary alveolar proteinosis after bilateral lung transplantation in a patient with a nonsense mutation in CSF2RB,”. Respir. Med. Case Reports 2016; 19: 89-93 DOI: 10.1016/j.rmcr.2016.06.011.
  • 49 Santamaria F. et al. “Recurrent fatal pulmonary alveolar proteinosis after heart-lung transplantation in a child with lysinuric protein intolerance,”. J. Pediatr. 2004; 145: 268-272 DOI: 10.1016/j.jpeds.2004.04.047.
  • 50 Nishinakamura R. et al. “The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 βc receptor-deficient mice is reversed by bone marrow transplantation,” . J. Exp. Med. 1996; 183: 2657-2662 DOI: 10.1084/jem.183.6.2657.
  • 51 Kleff V. et al. “Gene therapy of βc-deficient pulmonary alveolar proteinosis (βc-PAP): Studies in a murine in vivo model,”. Mol. Ther. 2008; 16: 757-764 DOI: 10.1038/mt.2008.7.
  • 52 Frémond ML. et al. “Successful haematopoietic stem cell transplantation in a case of pulmonary alveolar proteinosis due to GM-CSF receptor deficiency,”. Thorax 2018; 73: 590-592 DOI: 10.1136/thoraxjnl-2017-211076.
  • 53 Tabata S. et al. “Successful allogeneic bone marrow transplantation for myelodysplastic syndrome complicated by severe pulmonary alveolar proteinosis,”. Int. J. Hematol. 2009; 90: 407-412 DOI: 10.1007/s12185-009-0404-4.
  • 54 Pidala J, Khalil F, Fernandez H. “Pulmonary alveolar proteinosis following allogeneic hematopoietic cell transplantation,”. Bone Marrow Transplant 2011; 46: 1480-1483 DOI: 10.1038/bmt.2010.321.
  • 55 Suzuki T. et al. “Use of induced pluripotent stem cells to recapitulate pulmonary alveolar proteinosis pathogenesis,”. Am. J. Respir. Crit. Care Med. 2014; 189: 183-193 DOI: 10.1164/rccm.201306-1039OC.
  • 56 Mucci A. et al. “iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb-Deficient Mice,”. Stem Cell Reports 2018; 11: 696-710 DOI: 10.1016/j.stemcr.2018.07.006.
  • 57 Happle C. et al. “Pulmonary transplantation of human induced pluripotent stem cell-derived macrophages ameliorates pulmonary alveolar proteinosis,”. Am. J. Respir. Crit. Care Med. 2018; 198: 350-360 DOI: 10.1164/rccm.201708-1562OC.
  • 58 Shi S. et al. “Assessment of Statin Treatment for Pulmonary Alveolar Proteinosis without Hypercholesterolemia: A 12-Month Prospective, Longitudinal, and Observational Study,”. Biomed Res. Int. 2022; 2022 DOI: 10.1155/2022/1589660.
  • 59 McCarthy C. et al. “Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis,”. Nat. Commun. 2018; 9: 1-9 DOI: 10.1038/s41467-018-05491-z.
  • 60 Ozcelik U. et al. “Nonmyeloablative hematopoietic stem cell transplantation in a patient with hereditary pulmonary alveolar proteinosis,”. Pediatr. Pulmonol. 2021; 56: 341-343 DOI: 10.1002/ppul.25174.
  • 61 Beeckmans H. et al “Allogeneic Hematopoietic Stem Cell Transplantation After Prior Lung Transplantation for Hereditary Pulmonary Alveolar Proteinosis: A Case Report,”. Front. Immunol. 2022; 13 no 1-9 DOI: 10.3389/fimmu.2022.931153.
  • 62 Hetzel M. et al. “Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis,”. Haematologica 2020; 105: 1147-1157 DOI: 10.3324/haematol.2018.214866.
  • 63 Schneider C. et al. “Alveolar Macrophages Are Essential for Protection from Respiratory Failure and Associated Morbidity following Influenza Virus Infection,”. PLoS Pathog 2014; 10 DOI: 10.1371/journal.ppat.1004053.
  • 64 Happle C. et al. “Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis,”. Sci. Transl. Med. 2014; 6 DOI: 10.1126/scitranslmed.3009750.
  • 65 Suzuki T. et al. “Pulmonary macrophage transplantation therapy,”. Nature 2014; 514: 450-454 DOI: 10.1038/nature13807.
  • 66 Ackermann M. et al. “Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections,”. Nat. Commun. 2018; 9 DOI: 10.1038/s41467-018-07570-7.
  • 67 Ackermann M. et al. “Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors,”. Nat. Protoc. 2022; 17: 513-539 DOI: 10.1038/s41596-021-00654-7.
  • 68 Hetzel M. et al. “Function and Safety of Lentivirus-Mediated Gene Transfer for CSF2RA-Deficiency,”. Hum. Gene Ther. Methods 2017; 28: 318-329 DOI: 10.1089/hgtb.2017.092.
  • 69 Arumugam P. et al. “Long-Term Safety and Efficacy of Gene-Pulmonary Macrophage Transplantation Therapy of PAP in Csf2ra−/− Mice,”. Mol. Ther. 2019; 27: 1597-1611 DOI: 10.1016/j.ymthe.2019.06.010.