Skip to main content
Top

15-01-2016 | Uterine cancer | Article

Factors affecting pregnancy outcomes in young women treated with fertility-preserving therapy for well-differentiated endometrial cancer or atypical endometrial hyperplasia

Journal: Reproductive Biology and Endocrinology

Authors: Osamu Inoue, Toshio Hamatani, Nobuyuki Susumu, Wataru Yamagami, Seiji Ogawa, Takashi Takemoto, Akira Hirasawa, Kouji Banno, Naoaki Kuji, Mamoru Tanaka, Daisuke Aoki

Publisher: BioMed Central

Abstract

Background

Patients hoping to preserve their fertility receive conservative treatment with high-dose medroxyprogesterone acetate (MPA) for well-differentiated endometrioid adenocarcinoma (EC) or atypical endometrial hyperplasia (AEH) . Such treatment generally involves frequent intrauterine operations, including dilation and curettage (D&C) and endometrial biopsy (EMB), which could result in endometritis, endometrial thinning, or intrauterine adhesion. In turn, any of these outcomes could adversely affect implantation and pregnancy development. The current study thus aimed to identify factors that might affect pregnancy following conservative treatment by MPA.

Methods

We compared a pregnancy group (45 patients) with a non-pregnancy group (53 patients) of MPA-treated patients to evaluate the factors affecting clinical pregnancy establishment. We undertook a multivariate logistic regression analysis based on factors shown by univariate analysis to be significantly different between the groups. Univariate analysis identified number of D&C, endometrial thickness, duration of MPA administration, age of pregnancy permission (the age at which a patient was first allowed to attempt pregnancy after disappearance of the lesion), period of disappearance of lesions, and recurrence as independent variables.

Results

The odds ratios (95 % confidence interval) of multivariate analysis for disease recurrence, endometrial thickness during ovulation, and age of pregnancy permission were 0.283 (0.102–0.785), 1.677 (1.251–2.248), and 0.889 (0.792–0.998), respectively. There was no significant difference in the other independent variables between groups.

Conclusions

We identified three factors considered to affect pregnancy establishment following conservative treatment with MPA: recurrence, endometrial thickness during ovulation, and the age of the pregnancy permission. Introduction of infertility treatment including assisted reproductive technology (ART) soon after achieving tumor disappearance by MPA would therefore be beneficial for patients with disease recurrence, thin endometrium, or a higher age of pregnancy permission.
Literature
1.
Aoki D. Annual report of Gynecologic Oncology Committee, Japan Society of Obstetrics and Gynecology, 2013. J Obstet Gynaecol Res. 2014;40:338–48.PubMedCrossRef
2.
Duska LR, Garrett A, Rueda BR, Haas J, Chang Y, Fuller AF. Endometrial cancer in women 40 years old or younger. Gynecol Oncol. 2001;83(2):388–93.PubMedCrossRef
3.
Matsuda A, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H. Japan Cancer Surveillance Research Group. Cancer incidence and incidence rates in Japan in 2008: a study of 25 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 2014;44(4):388–396.PubMedCrossRef
4.
Kurman RJ, Kaminski PF, Norris HJ. The behavior of endometrial hyperplasia. A long-term study of “untreated” hyperplasia in 170 patients. Cancer. 1985;56(2):403–12.PubMedCrossRef
5.
Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet. 2015;4. NCCN guidelines http://​www.​nccn.​org/​professionals/​physician_​gls/​f_​guidelines.​asp.
6.
Deligdisch L. Hormonal Pathology of the Endometrium. Mod Pathol. 2000;13(3):285–94.PubMedCrossRef
7.
Yang S, Thiel KW, Leslie KK. Progesterone: the ultimate endometrial tumor suppressor. Trends Endocrinol Metab. 2011;22(4):145–52.PubMedPubMedCentralCrossRef
8.
Mentrikoski MJ, Shah AA, Hanley KZ, Atkins KA. Assessing Endometrial Hyperplasia and Carcinoma Treated With Progestin Therapy. Am J Clin Pathol. 2012;138(4):524–34.PubMedCrossRef
9.
Ramirez PT, Frumovitz M, Bodurka DC, Sun CC, Levenback C. Hormonal therapy for the management of grade 1 endometrial adenocarcinoma: a literature review. Gynecol Oncol. 2004;95(1):133–8.PubMedCrossRef
10.
Park H, Seok JM, Yoon BS, Seong SJ, Kim JY, Shim JY, et al. Effectiveness of high-dose progestin and long-term outcomes in young women with early-stage, well-differentiated endometrioid adenocarcinoma of uterine endometrim. Arch Gynecol Obstet. 2012;285(2):473–8.PubMedCrossRef
11.
Han AR, Kwon YS, Kim DY, Kim JH, Kim YM, Kim YT, et al. Pregnancy Outcomes Using Assisted Reproductive Technology After Fertility-Preserving Therapy in Patients With Endometrial Adenocarcinoma or Atypical Complex Hyperplasia. Int J Gynecol Cancer. 2009;19(1):147–51.PubMedCrossRef
12.
Lowe MP, Bender D, Sood AK, Davis W, Syrop CH, Sorosky JI. Two successful pregnancies after conservative treatment of endometrial cancer and assisted reproduction. Fertil Steril. 2002;77(1):188–9.PubMedCrossRef
13.
Kim MK, Yoon BS, Park H, Seong SJ, Chung HH, Kim JW, et al. Conservative Treatment With Medroxyprogesterone Acetate Plus Levonorgestrel Intrauterine System for Early-Stage Endometrial Cancer in Young Women. Int J Gynecol Cancer. 2011;21(4):673–7.PubMed
14.
Jason G, Bromer MD, Tamir S, Aldad BA, Hugh S, Taylor MD. Defining the proliferative phase endometrial defect. Fertil Steril. 2009;91(3):698–704.CrossRef
15.
Veeck LL. Oocyte Assessment and Biological Performance. Ann NY Acad Sci. 1988;541:259–95.PubMedCrossRef
16.
Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single balastocyst transfer. Fertil Steril. 2000;73(6):1155–8.PubMedCrossRef
17.
Shufaro Y, Simon A, Laufer N, Fatum M. Thin unresponsive endometrium--a possible complication of surgical curettage compromising ART outcome. J Assist Reprod Genet. 2008;25(8):421–5.PubMedPubMedCentralCrossRef
18.
Kovacs P, Matyas S, Boda K, Kaali SG. The effect of endometrial thickness on IVF/ICSI outcome. Hum Reprod. 2003;18(11):2337–41.PubMedCrossRef
19.
Zhao J, Zhang Q, Li Y. 2012. Reprod Biol Endocrinol. 2012;28(10):100.CrossRef
20.
Zhang X, Chen CH, Confino E, Barnes R, Milad M, Kazer RR. Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2005;83(2):336–40.PubMedCrossRef
21.
Esmailzadeh S, Faramarzi M. Endometrial thickness and pregnancy outcome after intrauterine insemination. Fertil Steril. 2007;88(2):432–7.PubMedCrossRef
22.
McWilliams GD, Frattarelli JL. Changes in measured endometrial thickness predict in vitro fertilization success. Fertil Steril. 2007;88(1):74–81.PubMedCrossRef
23.
Detti L, Yelian FD, Kruger ML, Diamond MP, Rode A, Mitwally MFM. Endometrial thickness is related to miscarriage rate, but not the estradiol concentration, in cycles down-regulated with gonadotropin-releasing hormone antagonist. Fertil Steril. 2008;89(4):998–1001.PubMedCrossRef
24.
Lédée-Bataille N, Olivennes F, Lefaix JL, Chaouat G, Frydman R, Delanian S. Combined treatment by pentoxifylline and tocopherol for recipient women with a thin endometrium enrolled in an oocyte donation programme. Human Repro. 2002;17(5):1249–53.CrossRef
25.
Gnainsky Y, Granot I, Aldo PB, Barash A, Or Y, Schechtman E, et al. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril. 2010;94(6):2030–6.PubMedPubMedCentralCrossRef
26.
Miwa I, Tamura H, Takasaki A, Yamagata Y, Shimamura K, Sugino N. Pathophysiologic features of “thin” endometrium. Fertil Steril. 2009;91(4):998–1004.PubMedCrossRef
27.
Fujimoto A, Ichinose M, Harada M, Hirata T, Osuga Y, Fujii T. The outcome of infertility treatment in patients undergoing assisted reproductive technology after conservative therapy for endometrial cancer. J Assist Reprod Genet. 2014;31(9):1189–94.PubMedPubMedCentralCrossRef
28.
Mazzon I, Corrado G, Masciullo V, Morricone D, Ferrandina G, Scambia G. Conservative surgical management of stage IA endometrial carcinoma for fertility preservation. Fertil Steril. 2010;93:1286–9.PubMedCrossRef
29.
Chang YN, Zhang Y, Wang YJ, Wang LP, Duan H. Effect of hysteroscopy on the peritoneal dissemination of endometrial cancer cells: a meta-analysis. Fertil Steril. 2011;96:957–61.PubMedCrossRef
30.
Friedler S, Margalioth EJ, Kafka I, Yaffe H. Incidence of post abortion intra-uterine adhesions evaluated by hysteroscopy: a prospective study. Hum Reprod. 1993;8(3):442–4.PubMed
31.
Randall TC, Kurman RJ. Progestin treatment of atypical hyperplasia and well- differentiated carcinoma of the endometrium in women under age 40. Obstet Gynecol. 1997;90(3):434–40.PubMedCrossRef
32.
Yamazawa K, Hirai M, Fujito A, Nishi H, Terauchi F, Ishikra H, et al. Fertility-preserving treatment with progestin, and pathological criteria to predict responses, in young women with endometrial cancer. Hum Reprod. 2007;22(7):1953–8.PubMedCrossRef
33.
Ushijima K, Yahata H, Yoshikawa H, Konishi I, Yasugi T, Saito T, et al. Multicenter phase II study of fertility-sparing treatment with medroxyprogesterone acetate for endometrial carcinoma and atypical hyperplasia in young women. J Clin Oncol. 2007;25(19):2798–803.PubMedCrossRef
34.
Chiva L, Lapuente F, González-Cortijo L, Carballo N, García JF, Rojo A, et al. Sparing fertility in young patients with endometrial cancer. Gynecol Oncol. 2008;111(2 Suppl):S101–4.PubMedCrossRef
35.
Ichinose M, Fujimoto A, Osuga Y, Minaguchi T, Kawana K, Yano T, et al. The influence of infertility treatment on the prognosis of endometrial cancer and atypical complex endometrial hyperplasia. Int J Gynecol Cancer. 2013;23(2):288–93.PubMedCrossRef
36.
Park JY, Seong SJ, Kim TJ, Kim JW, Kim SM, Bae DS, et al. Pregnancy Outcomes After Fertility-Sparing Management in Young Women With Early Endometrial. Obstet Gynecol. 2013;121(1):136–42.PubMedCrossRef