Skip to main content
Top

07-02-2017 | Sarcoma | Article

Metastatic biomarkers in synovial sarcoma

Journal: Biomarker Research

Authors: Rosalia de Necochea-Campion, Lee M. Zuckerman, Hamid R. Mirshahidi, Shahrzad Khosrowpour, Chien-Shing Chen, Saied Mirshahidi

Publisher: BioMed Central

Abstract

Synovial sarcoma (SS) is an aggressive soft tissue sarcoma (STS) that typically occurs in the extremities near a joint. Metastatic disease is common and usually occurs in the lungs and lymph nodes. Surgical management is the mainstay of treatment with chemotherapy and radiation typically used as adjuvant treatment. Although chemotherapy has a positive impact on survival, the prognosis is poor if metastatic disease occurs. The biology of sarcoma invasion and metastasis remain poorly understood. Chromosomal translocation with fusion of the SYT and SSX genes has been described and is currently used as a diagnostic marker, although the full impact of the fusion is unknown. Multiple biomarkers have been found to be associated with SS and are currently under investigation regarding their pathways and mechanisms of action. Further research is needed in order to develop better diagnostic screening tools and understanding of tumor behavior. Development of targeted therapies that reduce metastatic events in SS, would dramatically improve patient prognosis.
Literature
1.
Rajwanshi A, Srinivas R, Upasana G. Malignant small round cell tumors. J Cytol. 2009;26(1):1–10.CrossRefPubMedPubMedCentral
2.
Rong R, et al. Metastatic poorly differentiated monophasic synovial sarcoma to lung with unknown primary: a molecular genetic analysis. Int J Clin Exp Pathol. 2009;3(2):217–21.PubMedPubMedCentral
3.
Thway K, Fisher C. Synovial sarcoma: defining features and diagnostic evolution. Ann Diagn Pathol. 2014;18(6):369–80.CrossRefPubMed
4.
Kimura T, et al. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells. Oncogene. 2016;35(30):3932–43.CrossRefPubMed
5.
Eilber FC, Dry SM. Diagnosis and management of synovial sarcoma. J Surg Oncol. 2008;97(4):314–20.CrossRefPubMed
6.
Sultan I, et al. Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer. 2009;115(15):3537–47.CrossRefPubMed
7.
Krieg AH, et al. Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Ann Oncol. 2011;22(2):458–67.CrossRefPubMed
8.
Deshmukh R, Mankin HJ, Singer S. Synovial sarcoma: the importance of size and location for survival. Clin Orthop Relat Res. 2004;419:155–61.CrossRef
9.
Vlenterie M, et al. Outcome of chemotherapy in advanced synovial sarcoma patients: Review of 15 clinical trials from the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group; setting a new landmark for studies in this entity. Eur J Cancer. 2016;58:62–72.CrossRefPubMed
10.
Salah S, et al. Factors influencing survival in metastatic synovial sarcoma: importance of patterns of metastases and the first-line chemotherapy regimen. Med Oncol. 2013;30(3):639.CrossRefPubMed
11.
Amankwah EK, Conley AP, Reed DR. Epidemiology and therapies for metastatic sarcoma. Clin Epidemiol. 2013;5:147–62.PubMedPubMedCentral
12.
Spurrell EL, et al. Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann Oncol. 2005;16(3):437–44.CrossRefPubMed
13.
Corey RM, Swett K, Ward WG. Epidemiology and survivorship of soft tissue sarcomas in adults: a national cancer database report. Cancer Med. 2014;3(5):1404–15.CrossRefPubMedPubMedCentral
14.
Vlenterie M, Jones RL, van der Graaf WT. Synovial sarcoma diagnosis and management in the era of targeted therapies. Curr Opin Oncol. 2015;27(4):316–22.CrossRefPubMed
15.
Kubo T, et al. Prognostic value of SS18-SSX fusion type in synovial sarcoma; systematic review and meta-analysis. Springerplus. 2015;4:375.CrossRefPubMedPubMedCentral
16.
Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013;153(1):71–85.CrossRefPubMedPubMedCentral
17.
Przybyl J, et al. Downstream and intermediate interactions of synovial sarcoma-associated fusion oncoproteins and their implication for targeted therapy. Sarcoma. 2012;2012:249219.CrossRefPubMedPubMedCentral
18.
Garcia CB, Shaffer CM, Eid JE. Genome-wide recruitment to Polycomb-modified chromatin and activity regulation of the synovial sarcoma oncogene SYT-SSX2. BMC Genomics. 2012;13:189.CrossRefPubMedPubMedCentral
19.
Su L, et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell. 2012;21(3):333–47.CrossRefPubMedPubMedCentral
20.
Rekhi B, et al. Immunohistochemical validation of TLE1, a novel marker, for synovial sarcomas. Indian J Med Res. 2012;136(5):766–75.PubMedPubMedCentral
21.
Laporte AN et al. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay. Oncotarget, 2016;7(23):34384–94.
22.
Panagopoulos I, et al. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer. 2001;31(4):362–72.CrossRefPubMed
23.
Sun Y, et al. Prognostic implication of SYT-SSX fusion type and clinicopathological parameters for tumor-related death, recurrence, and metastasis in synovial sarcoma. Cancer Sci. 2009;100(6):1018–25.CrossRefPubMed
24.
Ladanyi M, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62(1):135–40.PubMed
25.
Takenaka S, et al. Prognostic implication of SYT-SSX fusion type in synovial sarcoma: a multi-institutional retrospective analysis in Japan. Oncol Rep. 2008;19(2):467–76.PubMed
26.
Fricke A, et al. Identification of a blood-borne miRNA signature of synovial sarcoma. Mol Cancer. 2015;14:151.CrossRefPubMedPubMedCentral
27.
Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 2016;7(25):38892–907.PubMed
28.
Hisaoka M, et al. Identification of altered MicroRNA expression patterns in synovial sarcoma. Genes Chromosomes Cancer. 2011;50(3):137–45.CrossRefPubMed
29.
Fricke A, et al. Synovial Sarcoma Microvesicles Harbor the SYT-SSX Fusion Gene Transcript: Comparison of Different Methods of Detection and Implications in Biomarker Research. Stem Cells Int. 2016;2016:6146047.CrossRefPubMedPubMedCentral
30.
Hashimoto N, et al. Detection of SYT-SSX fusion gene in peripheral blood from a patient with synovial sarcoma. Am J Surg Pathol. 2001;25(3):406–10.CrossRefPubMed
31.
Chang L, et al. Circulating tumor cells in sarcomas: a brief review. Med Oncol. 2015;32(1):430.CrossRefPubMed
32.
Chinen LT, et al. Isolation, detection, and immunomorphological characterization of circulating tumor cells (CTCs) from patients with different types of sarcoma using isolation by size of tumor cells: a window on sarcoma-cell invasion. Onco Targets Ther. 2014;7:1609–17.CrossRefPubMedPubMedCentral
33.
Chibon F, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010;16(7):781–7.CrossRefPubMed
34.
Lagarde P, et al. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol. 2013;31(5):608–15.CrossRefPubMed
35.
Gruneberg U, et al. KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol. 2006;172(3):363–72.CrossRefPubMedPubMedCentral
36.
Ahmed SM, et al. KIF14 negatively regulates Rap1a-Radil signaling during breast cancer progression. J Cell Biol. 2012;199(6):951–67.CrossRefPubMedPubMedCentral
37.
Vagnarelli P, et al. Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit. Dev Cell. 2011;21(2):328–42.CrossRefPubMed
38.
Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20(6):761–87.PubMed
39.
Chen D, et al. Insulin-like growth factor-binding protein-7 functions as a potential tumor suppressor in hepatocellular carcinoma. Clin Cancer Res. 2011;17(21):6693–701.CrossRefPubMedPubMedCentral
40.
Burger AM, et al. Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer. Eur J Cancer. 2005;41(11):1515–27.CrossRefPubMed
41.
Jiang W, et al. Insulin-like growth factor binding protein 7 mediates glioma cell growth and migration. Neoplasia. 2008;10(12):1335–42.CrossRefPubMedPubMedCentral
42.
Shao L, et al. Detection of the differentially expressed gene IGF-binding protein-related protein-1 and analysis of its relationship to fasting glucose in Chinese colorectal cancer patients. Endocr Relat Cancer. 2004;11(1):141–8.CrossRefPubMed
43.
Gambaro K, et al. Low levels of IGFBP7 expression in high-grade serous ovarian carcinoma is associated with patient outcome. BMC Cancer. 2015;15:135.CrossRefPubMedPubMedCentral
44.
Nousbeck J, et al. Insulin-like growth factor-binding protein 7 regulates keratinocyte proliferation, differentiation and apoptosis. J Invest Dermatol. 2010;130(2):378–87.CrossRefPubMed
45.
Wajapeyee N, et al. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74.CrossRefPubMedPubMedCentral
46.
Ahmed S, et al. Proteolytic processing of IGFBP-related protein-1 (TAF/angiomodulin/mac25) modulates its biological activity. Biochem Biophys Res Commun. 2003;310(2):612–8.CrossRefPubMed
47.
Rao C, et al. High expression of IGFBP7 in fibroblasts induced by colorectal cancer cells is co-regulated by TGF-beta and Wnt signaling in a Smad2/3-Dvl2/3-dependent manner. PLoS One. 2014;9(1):e85340.CrossRefPubMedPubMedCentral
48.
Padua D, Massague J. Roles of TGFbeta in metastasis. Cell Res. 2009;19(1):89–102.CrossRefPubMed
49.
Massague J. TGFbeta in Cancer. Cell. 2008;134(2):215–30.CrossRefPubMedPubMedCentral
50.
Pen A, et al. Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-beta signaling. Oncogene. 2008;27(54):6834–44.CrossRefPubMed
51.
Benassi MS, et al. Tissue and serum IGFBP7 protein as biomarker in high-grade soft tissue sarcoma. Am J Cancer Res. 2015;5(11):3446–54.PubMedPubMedCentral
52.
Palmerini E, et al. Prognostic and predictive role of CXCR4, IGF-1R and Ezrin expression in localized synovial sarcoma: is chemotaxis important to tumor response? Orphanet J Rare Dis. 2015;10:6.CrossRefPubMedPubMedCentral
53.
Wan X, Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist. 2007;12(8):1007–18.CrossRefPubMed
54.
Roomi MW, et al. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in adult human sarcoma cell lines. Int J Oncol. 2013;43(1):39–49.PubMedPubMedCentral
55.
Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L525–34.CrossRefPubMed
56.
Benassi MS, et al. Metalloproteinase expression and prognosis in soft tissue sarcomas. Ann Oncol. 2001;12(1):75–80.CrossRefPubMed
57.
Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001;93(3):178–93.CrossRefPubMed
58.
Ferrari C, et al. Role of MMP-9 and its tissue inhibitor TIMP-1 in human osteosarcoma: findings in 42 patients followed for 1–16 years. Acta Orthop Scand. 2004;75(4):487–91.CrossRefPubMed
59.
Benassi MS, et al. Tissue and serum loss of metalloproteinase inhibitors in high grade soft tissue sarcomas. Histol Histopathol. 2003;18(4):1035–40.PubMed
60.
Moran A, et al. Clinical relevance of MMP-9, MMP-2, TIMP-1 and TIMP-2 in colorectal cancer. Oncol Rep. 2005;13(1):115–20.PubMed
61.
Way G, et al. Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. Mol Biol Cell. 2002;13(9):3344–54.CrossRefPubMedPubMedCentral
62.
Hendrix A, et al. The tumor ecosystem regulates the roads for invasion and metastasis. Clin Res Hepatol Gastroenterol. 2011;35(11):714–9.CrossRefPubMed
63.
Lin S, et al. Secernin-1 contributes to colon cancer progression through enhancing matrix metalloproteinase-2/9 exocytosis. Dis Markers. 2015;2015:230703.CrossRefPubMedPubMedCentral
64.
Miyoshi N, et al. SCRN1 is a novel marker for prognosis in colorectal cancer. J Surg Oncol. 2010;101(2):156–9.PubMed
65.
Suehara Y, et al. Secernin-1 as a novel prognostic biomarker candidate of synovial sarcoma revealed by proteomics. J Proteomics. 2011;74(6):829–42.CrossRefPubMed
66.
Wang W, et al. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Med Res Rev. 2015;35(6):1220–67.CrossRefPubMedPubMedCentral
67.
Volkel P, et al. Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res. 2015;7(2):175–93.PubMedPubMedCentral
68.
Changchien YC, et al. Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). J Transl Med. 2012;10:216.CrossRefPubMedPubMedCentral
69.
Kawano S, et al. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma. PLoS One. 2016;11(7):e0158888.CrossRefPubMedPubMedCentral
70.
Ramaglia M, et al. High EZH2 expression is correlated to metastatic disease in pediatric soft tissue sarcomas. Cancer Cell Int. 2016;16:59.CrossRefPubMedPubMedCentral
71.
Yamaguchi H, Hung MC. Regulation and Role of EZH2 in Cancer. Cancer Res Treat. 2014;46(3):209–22.CrossRefPubMedPubMedCentral
72.
Fujii S, et al. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 2008;283(25):17324–32.CrossRefPubMedPubMedCentral
73.
Moore HM, et al. EZH2 inhibition decreases p38 signaling and suppresses breast cancer motility and metastasis. Breast Cancer Res Treat. 2013;138(3):741–52.CrossRefPubMedPubMedCentral
74.
Schultz-Thater E, et al. NY-ESO-1 tumour associated antigen is a cytoplasmic protein detectable by specific monoclonal antibodies in cell lines and clinical specimens. Br J Cancer. 2000;83(2):204–8.CrossRefPubMedPubMedCentral
75.
Park TS, et al. Expression of MAGE-A and NY-ESO-1 in Primary and Metastatic Cancers. J Immunother. 2016;39(1):1–7.CrossRefPubMed
76.
Li M, et al. Effective inhibition of melanoma tumorigenesis and growth via a new complex vaccine based on NY-ESO-1-alum-polysaccharide-HH2. Mol Cancer. 2014;13:179.CrossRefPubMedPubMedCentral
77.
Giesen E, et al. NY-ESO-1 as a potential immunotherapeutic target in renal cell carcinoma. Oncotarget. 2014;5(14):5209–17.CrossRefPubMedPubMedCentral
78.
Aung PP, et al. Expression of New York esophageal squamous cell carcinoma-1 in primary and metastatic melanoma. Hum Pathol. 2014;45(2):259–67.CrossRefPubMed
79.
Lai JP, et al. NY-ESO-1 expression in sarcomas: A diagnostic marker and immunotherapy target. Oncoimmunol. 2012;1(8):1409–10.CrossRef
80.
Robbins PF, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.CrossRefPubMedPubMedCentral
81.
Xu C, et al. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther. 2015;9:4953–64.PubMedPubMedCentral
82.
Dewan MZ, et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273–6.CrossRefPubMed
83.
Gangadhar T, Nandi S, Salgia R. The role of chemokine receptor CXCR4 in lung cancer. Cancer Biol Ther. 2010;9(6):409–16.CrossRefPubMed
84.
Lv S, et al. The association of CXCR4 expression with prognosis and clinicopathological indicators in colorectal carcinoma patients: a meta-analysis. Histopathology. 2014;64(5):701–12.CrossRefPubMed
85.
Scala S, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res. 2005;11(5):1835–41.CrossRefPubMed
86.
Oda Y, et al. Chemokine receptor CXCR4 expression is correlated with VEGF expression and poor survival in soft-tissue sarcoma. Int J Cancer. 2009;124(8):1852–9.CrossRefPubMed
87.
Yuecheng Y, Xiaoyan X. Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur J Cancer Prev. 2007;16(5):430–5.CrossRefPubMed
88.
Uchida D, et al. Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp Cell Res. 2003;290(2):289–302.CrossRefPubMed
89.
Guo F, et al. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35(7):816–26.CrossRefPubMed
90.
Kim RH, Li BD, Chu QD. The role of chemokine receptor CXCR4 in the biologic behavior of human soft tissue sarcoma. Sarcoma. 2011;2011:593708.PubMed
91.
Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med. 2001;345(11):833–5.CrossRefPubMed
92.
Muller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.CrossRefPubMed
93.
Debnath B, et al. Small molecule inhibitors of CXCR4. Theranostics. 2013;3(1):47–75.CrossRefPubMedPubMedCentral
94.
Kim SY, et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis. 2008;25(3):201–11.CrossRefPubMed