Skip to main content
Top

23-10-2017 | Recurrent and metastatic breast cancer | Article

Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study

Journal: Breast Cancer Research and Treatment

Authors: Luc Y. Dirix, Istvan Takacs, Guy Jerusalem, Petros Nikolinakos, Hendrik-Tobias Arkenau, Andres Forero-Torres, Ralph Boccia, Marc E. Lippman, Robert Somer, Martin Smakal, Leisha A. Emens, Borys Hrinczenko, William Edenfield, Jayne Gurtler, Anja von Heydebreck, Hans Juergen Grote, Kevin Chin, Erika P. Hamilton

Publisher: Springer US

Abstract

Purpose

Agents targeting programmed death receptor 1 (PD-1) or its ligand (PD-L1) have shown antitumor activity in the treatment of metastatic breast cancer (MBC). The aim of this study was to assess the activity of avelumab, a PD-L1 inhibitor, in patients with MBC.

Methods

In a phase 1 trial (JAVELIN Solid Tumor; NCT01772004), patients with MBC refractory to or progressing after standard-of-care therapy received avelumab intravenously 10 mg/kg every 2 weeks. Tumors were assessed every 6 weeks by RECIST v1.1. Adverse events (AEs) were graded by NCI-CTCAE v4.0. Membrane PD-L1 expression was assessed by immunohistochemistry (Dako PD-L1 IHC 73-10 pharmDx).

Results

A total of 168 patients with MBC, including 58 patients with triple-negative breast cancer (TNBC), were treated with avelumab for 2–50 weeks and followed for 6–15 months. Patients were heavily pretreated with a median of three prior therapies for metastatic or locally advanced disease. Grade ≥ 3 treatment-related AEs occurred in 13.7% of patients, including two treatment-related deaths. The confirmed objective response rate (ORR) was 3.0% overall (one complete response and four partial responses) and 5.2% in patients with TNBC. A trend toward a higher ORR was seen in patients with PD-L1+ versus PD-L1− tumor-associated immune cells in the overall population (16.7% vs. 1.6%) and in the TNBC subgroup (22.2% vs. 2.6%).

Conclusion

Avelumab showed an acceptable safety profile and clinical activity in a subset of patients with MBC. PD-L1 expression in tumor-associated immune cells may be associated with a higher probability of clinical response to avelumab in MBC.
Literature
1.
O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(Suppl 3):20–29CrossRefPubMed
2.
National Cancer Institute (2016) SEER cancer stat facts: female breast cancer. National Cancer Institute, Bethesda, p 2016
3.
National Comprehensive Cancer Network (V2 2017) (2017) NCCN clinical practice guidelines in oncology: breast cancer. National Comprehensive Cancer Network, Orlando
4.
Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434CrossRefPubMed
5.
Anders CK, Abramson V, Tan T et al (2016) The evolution of triple-negative breast cancer: from biology to novel therapeutics. Am Soc Clin Oncol Educ Book 35:34–42CrossRefPubMed
6.
Andre F, Zielinski CC (2012) Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann Oncol 23:46–51CrossRef
7.
Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982CrossRefPubMedPubMedCentral
8.
Mittendorf EA, Philips AV, Meric-Bernstam F et al (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2:361–370CrossRefPubMedPubMedCentral
9.
Schalper KA, Velcheti V, Carvajal D et al (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 20:2773–2782CrossRefPubMed
10.
Wimberly H, Brown JR, Schalper K et al (2015) PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res 3:326–332CrossRefPubMed
11.
Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMed
12.
Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034CrossRefPubMedPubMedCentral
13.
Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297CrossRefPubMedPubMedCentral
14.
Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 4:59CrossRefPubMedPubMedCentral
15.
Cimino-Mathews A, Thompson E, Taube JM et al (2016) PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 47:52–63CrossRefPubMed
16.
Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461CrossRefPubMedPubMedCentral
17.
Nanda R, Chow LQ, Dees EC et al (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34:2460–2467CrossRefPubMed
18.
Emens L, Braiteh F, Cassier P et al (2015) Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). Cancer Res 75:2859CrossRef
19.
Schmid P, Cruz C, Braiteh FS et al (2017) Atezolizumab in metastatic TNBC (mTNBC): long-term clinical outcomes and biomarker analysis. Cancer Res 77:2986CrossRef
20.
Heery CR, O’Sullivan-Coyne G, Madan RA et al (2017) Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol 18:587–597CrossRefPubMed
21.
Boyerinas B, Jochems C, Fantini M et al (2015) Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 3:1148–1157CrossRefPubMedPubMedCentral
22.
Fujii R, Friedman ER, Richards J et al (2016) Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget 7:33498–33511PubMedPubMedCentral
23.
Grenga I, Donahue RN, Lepone LM et al (2016) A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses. Clin Transl Immunol 5:e83CrossRef
24.
Kaufman HL, Russell J, Hamid O et al (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17:1374–1385CrossRefPubMedPubMedCentral
25.
Gulley JL, Rajan A, Spigel DR et al (2017) Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol 18:599–610CrossRefPubMed
26.
Apolo AB, Infante JR, Balmanoukian A et al (2017) Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol 35:2117–2124CrossRefPubMed
27.
Bavencio (avelumab) injection [package insert] (2017) Darmstadt. Merck KGaA, Darmstadt
28.
Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247CrossRefPubMed
29.
Donahue RN, Lepone LM, Grenga I et al (2017) Analyses of the peripheral immunome following multiple administrations of avelumab, a human IgG1 anti-PD-L1 monoclonal antibody. J Immunother Cancer 5:13CrossRef
30.
Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14:847–856CrossRefPubMed
31.
Wang X, Teng F, Kong L et al (2016) PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther 9:5023–5039CrossRefPubMedPubMedCentral
32.
Hirsch FR, McElhinny A, Stanforth D et al (2016) PD-L1 Immunohistochemistry assays for lung cancer: results from phase 1 of the “blueprint PD-L1 IHC assay comparison project”. J Thorac Oncol 12:208–222CrossRefPubMed
33.
Adams S, Diamond J, Hamiton E et al (2016) Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol 34:1009
34.
Tolaney S, Savulsky C, Aktan G et al (2017) Phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Eur J Cancer 72:S16CrossRef