Skip to main content
Top

12-09-2017 | Pediatric leukemia | Article

Residential magnetic fields exposure and childhood leukemia: a population-based case–control study in California

Journal: Cancer Causes & Control

Authors: Leeka Kheifets, Catherine M. Crespi, Chris Hooper, Myles Cockburn, Aryana T. Amoon, Ximena P. Vergara

Publisher: Springer International Publishing

Abstract

Purpose

Studies have reported an increased risk of childhood leukemia associated with exposure to magnetic fields. We conducted a large records-based case–control study of childhood leukemia risk and exposure to magnetic fields from power lines in California.

Methods

The study included 5,788 childhood leukemia cases (born in and diagnosed in California 1986–2008) matched to population-based controls on age and sex. We calculated magnetic fields at birth addresses using geographic information systems, aerial imagery, historical information on load and phasing, and site visits.

Results

Based on unconditional logistic regression controlling for age, sex, race/ethnicity, and socioeconomic status using subjects geocoded to a basic standard of accuracy, we report a slight risk deficit in two intermediate exposure groups and a small excess risk in the highest exposure group (odds ratio of 1.50 (95% confidence interval [0.70, 3.23])). Subgroup and sensitivity analyses as well as matched analyses gave similar results. All estimates had wide confidence intervals.

Conclusion

Our large, statewide, record-based case–control study of childhood leukemia in California does not in itself provide clear evidence of risk associated with greater exposure to magnetic fields from power lines, but could be viewed as consistent with previous findings of increased risk.
Literature
1.
Kheifets L, Shimkhada R (2005) Childhood leukemia and EMF: review of the epidemiologic evidence. Bioelectromagnetics 26(S7):S51–S59CrossRef
2.
Ahlbom A, Day N, Feychting M et al (2000) A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer 83(5):692–698CrossRefPubMedPubMedCentral
3.
Greenland S, Sheppard AR, Kaune WT et al (2000) A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology 11(6):624–634CrossRefPubMed
4.
Kheifets L, Ahlbom A, Crespi CM et al (2010) Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer 103(7):1128–1135CrossRefPubMedPubMedCentral
5.
Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109(3):273–284CrossRefPubMed
6.
Savitz DA, Wachtel H, Barnes FA et al (1988) Case–control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol 128(1):21–38CrossRefPubMed
7.
London SJ, Thomas DC, Bowman JD et al (1991) Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol 134(9):923–937CrossRefPubMed
8.
Linet MS, Hatch EE, Kleinerman RA et al (1997) Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med 337(1):1–8CrossRefPubMed
9.
Kabuto M, Nitta H, Yamamoto S et al (2006) Childhood leukemia and magnetic fields in Japan: a case–control study of childhood leukemia and residential power-frequency magnetic fields in Japan. Int J Cancer 119(3):643–650CrossRefPubMed
10.
McBride ML, Gallagher RP, Theriault G et al (1999) Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada. Am J Epidemiol 149(9):831–842CrossRefPubMed
11.
Green LM, Miller AB, Agnew DA et al (1999) Childhood leukemia and personal monitoring of residential exposures to electric and magnetic fields in Ontario, Canada. Cancer Causes Control 10(3):233–243CrossRefPubMed
12.
Draper G, Vincent T, Kroll ME, Swanson J (2005) Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case–control study. BMJ 330(7503):1290CrossRefPubMedPubMedCentral
13.
Sermage-Faure C, Demoury C, Rudant J et al (2013) Childhood leukaemia close to high-voltage power lines—the Geocap study, 2002–2007. Br J Cancer 108(9):1899–1906CrossRefPubMedPubMedCentral
14.
Crespi CM, Vergara XP, Hooper C et al (2016) Childhood leukaemia and distance from power lines in California: a population-based case–control study. Br J Cancer 115(1):122–128CrossRefPubMedPubMedCentral
15.
Feychting M, Alhbom M (1993) Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol 138(7):467–481CrossRefPubMed
16.
Verkasalo PK, Pukkala E, Hongisto MY et al (1993) Risk of cancer in Finnish children living close to power lines. BMJ 307(6909):895–899CrossRefPubMedPubMedCentral
17.
Tynes T, Haldorsen T (1997) Electromagnetic fields and cancer in children residing near Norwegian high-voltage power lines. Am J Epidemiol 145(3):219–226CrossRefPubMed
18.
Pedersen C, Johansen C, Schuz J et al (2015) Residential exposure to extremely low-frequency magnetic fields and risk of childhood leukaemia, CNS tumor, and lymphoma in Denmark. Br J Cancer 113(9):1370–1374CrossRefPubMedPubMedCentral
19.
Kroll ME, Swanson J, Vincent TJ, Draper GJ (2010) Childhood cancer and magnetic fields from high-voltage power lines in England and Wales: a case–control study. Br J Cancer 103(7):1122–1127CrossRefPubMedPubMedCentral
20.
Bunch KJ, Swanson J, Vincent TJ, Murphy MF (2016) Epidemiological study of power lines and childhood cancer in the UK: further analyses. J Radiol Prot 36(3):437–455CrossRefPubMed
21.
Kheifets L, Crespi CM, Hooper C et al (2013) Epidemiologic study of residential proximity to transmission lines and childhood cancer in California: description of design, epidemiologic methods and study population. J Expo Sci Environ Epidemiol 25(1):45–52CrossRefPubMedPubMedCentral
22.
Vergara XP, Kavet R, Crespi CM et al (2015) Estimating magnetic fields of homes near transmission lines in the california power line study. Environ Res 140:514–523CrossRefPubMedPubMedCentral
23.
The California Cancer Registry. Mission Statement & Purpose. http://​www.​ccrcal.​org/​Inside_​CCR/​About_​Us.​html. Updated March 2009. Accessed 2016
24.
Oksuzyan S, Crespi CM, Cockburn M et al (2012) Birth weight and other perinatal characteristics and childhood leukemia in California. Cancer Epidemiol 36(6):e359–e365CrossRefPubMedPubMedCentral
25.
Goldberg DW, Cockburn MG (2010) Improving geocode accuracy with candidate selection criteria. Trans GIS 14(s1):149–176CrossRef
26.
Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P (2001) A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv Methodol 27:85–95
27.
Van Buuren S, Boshuizen HC, Knook DL (1999) Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 18:681–694CrossRefPubMed
28.
Bunch KJ, Keegan TJ, Swanson J et al (2014) Residential distance at birth from overhead high-voltage powerlines: childhood cancer risk in Britain 1962–2008. Br J Cancer 110(5):1402–1408CrossRefPubMedPubMedCentral
29.
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://​www.​R-project.​org/​. Published 2014
30.
Oksuzyan S, Crespi CM, Cockburn M et al (2015) Race/ethnicity and the risk of childhood leukaemia: a case–control study in California. J Epidemiol Community Health 69(8):795–802CrossRefPubMedPubMedCentral
31.
Oksuzyan S, Crespi CM, Cockburn M, et al. (2015) Socio-economic status and childhood leukemia in California. Cancer Prev Curr Res 3(4)
32.
Kheifets L, Swanson J, Yuan Y et al (2016) Comparative analyses of studies of magnetic fields, radon and gamma radiation. J Radiol Prot 37(2):459CrossRef