Skip to main content
Top

19-03-2016 | Pediatric leukemia | Book chapter | Article

2. Etiology and Prevention of Acute Leukemias in Children

Authors: Juan Carlos Núñez-Enríquez, Janet Flores-Lujano, Vilma Carolina Bekker-Méndez, David Aldebarán Duarte-Rodríguez, Juan Manuel Mejía-Aranguré

Publisher: Springer International Publishing

Abstract

Acute leukemia (AL) is the most common type of cancer in children under 15 years of age and represents one of the leading causes of mortality among children worldwide. Despite advancements in the knowledge of the biology and treatment of AL, the etiology remains unresolved. A small number of risk factors have been reported as established for the development of this disease, but they explain less than 10 % of cases, leaving 90 % of cases without an identified causation.
Case-control studies have been the main research designs used to investigate the causes of AL in children. The importance of case-control studies rests on the assumption that data on individuals is essential for gaining an understanding of the environmental causes of childhood leukemia and adds great value to the genetic research.
Genetic or environmental factors alone may not be responsible for causing childhood AL. Rather, it is thought that an interaction between genetic susceptibility and exposures to certain environmental factors in a specific time window can contribute to the development of this disease.
Identifying the causes of childhood AL would lead to the establishment of effective preventive measures in children who are at high risk of developing this disease, reducing incidence and mortality rates, the costs of medical care, and other consequences associated with childhood leukemia. Therefore, we need to implement a new framework for the etiology of AL. We believe that solving key elements of this puzzle can lead to prevention of the development of AL in children.
Literature
Ahlbom A, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 2000;83(5):692–8.PubMedPubMedCentralCrossRef
Allergy UK British Allergy Foundation. Allergy UK. Allergy medications. 2012. Available at: http://​www.​allergyuk.​org/​what-is-an-allergy/​what-is-an-allergy. Accessed 20 Oct 2014.
Alter BP. Cancer in Fanconi anemia, 1927–2001. Cancer. 2003;97(2):425–40.PubMedCrossRef
Alter BP, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150(2):179–88.PubMedPubMedCentral
American College of Radiology. ACR practice guideline for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation. Reston: American College of Radiology; 2008.
Annegers JF, Johnson CC. Studying parental occupation and childhood cancer. Epidemiology (Cambridge, Mass). 1992;3(1):1–2.CrossRef
Antó JM, Sunyer J, Kogevinas M. Environment and health: the long journey of environmental epidemiology at the turn of the millennium. J Epidemiol Biostat. 2000;5(1):49–60.PubMed
Bailey HD, et al. Maternal dietary intake of folate and vitamins B6 and B12 during pregnancy and the risk of childhood acute lymphoblastic leukemia. Nutr Cancer. 2012;64(7):1122–30.PubMedCrossRef
Begleiter A, Robotham E, Leith MK. Role of NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase) in activation of mitomycin C under hypoxia. Mol Pharmacol. 1992;41(4):677–82.PubMed
Begleiter A, et al. Induction of DT-diaphorase in cancer chemoprevention and chemotherapy. Oncol Res. 1997;9(6–7):371–82.PubMed
Bhatia S. Disparities in cancer outcomes: lessons learned from children with cancer. Pediatr Blood Cancer. 2011;56(6):994–1002.PubMedPubMedCentralCrossRef
Bhatti P, et al. Increased frequency of chromosome translocations associated with diagnostic x-ray examinations. Radiat Res. 2008;170(2):149–55.PubMedPubMedCentralCrossRef
Bollag G, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996;12(2):144–8.PubMedCrossRef
Brain JD, et al. Childhood leukemia: electric and magnetic fields as possible risk factors. Environ Health Perspect. 2003;111(7):962–70.PubMedPubMedCentralCrossRef
Brent RL. Carcinogenic risks of prenatal ionizing radiation. Semin Fetal Neonatal Med. 2014;19(3):203–13.PubMedCrossRef
Buffler PA, et al. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Investig. 2005;23(1):60–75.CrossRef
Butturini A, et al. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood. 1994;84(5):1650–5.PubMed
Byrd JC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36.PubMedCrossRef
Calvente I, et al. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review. Sci Total Environ. 2010;408(16):3062–9.PubMedCrossRef
Carroll WL, Raetz EA. Clinical and laboratory biology of childhood acute lymphoblastic leukemia. J Pediatr. 2012;160(1):10–8.PubMedCrossRef
Carroll WL, et al. Pediatric acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2003:102–31. Review. PubMed PMID: 14633779.
Chang JS, Wiemels JL, Buffler PA. Allergies and childhood leukemia. Blood Cells Mol Dis. 2009;42(2):99–104.PubMedCrossRef
Chen CL, et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood. 1997;89(5):1701–7.PubMed
Chokkalingam AP, Buffler P a. Genetic susceptibility to childhood leukaemia. Radiat Prot Dosim. 2008;132(2):119–29.CrossRef
Chokkalingam AP, et al. Haplotypes of DNA repair and cell cycle control genes, X-ray exposure, and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control: CCC. 2011;22(12):1721–30.PubMedPubMedCentralCrossRef
Chokkalingam AP, et al. Variation in xenobiotic transport and metabolism genes, household chemical exposures, and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control: CCC. 2012;23(8):1367–75.PubMedPubMedCentralCrossRef
Choong K, et al. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol. 1999;21(6):523–7.PubMedCrossRef
Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378–84.PubMedPubMedCentralCrossRef
Coles BF, Kadlubar FF. Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? BioFactors (Oxford, England). 2003;17(1–4):115–30.CrossRef
Collins-Underwood JR, Mullighan CG. Genetic alterations targeting lymphoid development in acute lymphoblastic leukemia. In: Dyer MA, editor. Cancer and development. San Diego: Academic; 2011. p. 384.
Colt JS, Blair A. Parental occupational exposures and risk of childhood cancer. Environ Health Perspect. 1998;106(Suppl):909–25.PubMedPubMedCentralCrossRef
Comisión Mundial de Ética del Conocimiento Científico y la Tecnología (COMEST). Informe del Grupo de Expertos sobre el principio precautorio. Paris: UNESCO; 2005.
Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: The National Academies Press; 2006.
Does M, et al. Exposure to electrical contact currents and the risk of childhood leukemia. Radiat Res. 2011;175(3):390–6.PubMedPubMedCentralCrossRef
Eichbaum W, et al. In: Raffensperger C, Tickner J, editors. Protecting public health and the environment: implementing the precautionary principle. 1st ed. Washington, DC: Island Press; 1999.
Ernster L. DT-diaphorase: a historical review. Chem Scr. 1987;27(A):1–13.
Fabia J, Thuy TD. Occupation of father at time of birth of children dying of malignant diseases. Br J Prev Soc Med. 1974;28(2):98–100.PubMedPubMedCentral
Faig M, et al. Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci U S A. 2000;97(7):3177–82.PubMedPubMedCentralCrossRef
Farioli A, et al. Tobacco smoke and risk of childhood acute lymphoblastic leukemia: findings from the SETIL case-control study. Cancer Causes Control: CCC. 2014;25(6):683–92.PubMedCrossRef
Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer. Scand J Work Environ Health. 1998;24(1):8–11.PubMedCrossRef
Fletcher RH, Fletcher SW, Fletcher GS. Clinical epidemiology: the essentials. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.
Flores-Lujano J, et al. Breastfeeding and early infection in the aetiology of childhood leukaemia in Down syndrome. Br J Cancer. 2009;101(5):860–4.PubMedPubMedCentralCrossRef
Flores-Lujano, J. et al. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. In: Mejia-Arangure JM, editor. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. Rijeka, Croatia: InTech; 2013. p. 342.
Florig HK. Safe, fair, affordable, practical and predictable: multiple objectives in EMF policy. Paper presented at: Annual Meeting of the National Council on Radiation Protection and Measurement; April 6–7, 1994; Arlington, Va.
Fonatsch C. The role of chromosome 21 in hematology and oncology. Genes, Chromosome Cancer. 2010;49(6):497–508.
German J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine. 1993;72(6):393–406.PubMedCrossRef
Gobba F, et al. Extremely low frequency-magnetic fields (ELF-EMF) occupational exposure and natural killer activity in peripheral blood lymphocytes. Sci Total Environ. 2009;407(3):1218–23.PubMedCrossRef
Greaves MF. Speculations on the cause of childhood acute lymphoblastic leukemia. Leuk: Off J Leuk Soc Am Leuk Res Fund UK. 1988;2(2):120–5.
Greaves M. Pre-natal origins of childhood leukemia. Rev Clin Exp Hematol. 2003;7(3):233–45.PubMed
Greenberg P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.PubMed
Greenland S, et al. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology (Cambridge, Mass). 2000;11(6):624–34.CrossRef
Greenlee RT, et al. Cancer statistics, 2000. CA Cancer J Clin. 2000;50(1):7–33.PubMedCrossRef
Grimwade D, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92(7):2322–33.PubMed
Gurney JG, Davis S, et al. Childhood cancer occurrence in relation to power line configurations: a study of potential selection bias in case-control studies. Epidemiology (Cambridge, Mass). 1995a;6(1):31–5.CrossRef
Gurney JG, Severson RK, et al. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995b;75(8):2186–95.PubMedCrossRef
Hakulinen T, Salonen T, Teppo L. Cancer in the offspring of fathers in hydrocarbon-related occupations. Br J Prev Soc Med. 1976;30(2):138–40.PubMedPubMedCentral
Harbron RW. Cancer risks from low dose exposure to ionising radiation – is the linear no-threshold model still relevant? Radiography. 2012;18(1):28–33.CrossRef
Hasle H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol. 2001;2(7):429–36.PubMedCrossRef
Hatch EE, et al. Do confounding or selection factors of residential wiring codes and magnetic fields distort findings of electromagnetic fields studies? Epidemiology (Cambridge, Mass). 2000;11(2):189–98.CrossRef
Hitzler JK, Zipursky A. Origins of leukaemia in children with Down syndrome. Nat Rev Cancer. 2005;5(1):11–20.PubMedCrossRef
Hoffmann L, et al. Therapy-related acute promyelocytic leukemia with t(15;17) (q22;q12) following chemotherapy with drugs targeting DNA topoisomerase II. A report of two cases and a review of the literature. Ann Oncol: Off J Eur Soc Med Oncol ESMO. 1995;6(8):781–8.
Hughes AM, et al. Allergy and risk of childhood leukaemia: results from the UKCCS. Int J Cancer J Int Cancer. 2007;121(4):819–24.CrossRef
Hyakuna N, et al. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder. Pediatr Blood Cancer. 2015;62(3):542–4.
Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55.PubMedCrossRef
Infante-Rivard C. Diagnostic x rays, DNA repair genes and childhood acute lymphoblastic leukemia. Health Phys. 2003;85(1):60–4.PubMedCrossRef
Infante-Rivard C, et al. Acute lymphoblastic leukaemia among Spanish children and mothers’ occupation: a case-control study. J Epidemiol Community Health. 1991;45(1):11–5.PubMedPubMedCentralCrossRef
Infante-Rivard C, et al. Parental smoking, CYP1A1 genetic polymorphisms and childhood leukemia (Québec, Canada). Cancer Causes Control: CCC. 2000;11(6):547–53.PubMedCrossRef
Izraeli S. Congenital syndromes and leukemia: clues to pathogenesis. Rev Clin Exp Hematol. 2003;7(3):246–60.PubMed
Jamieson D, Wartenberg D. The precautionary principle and electric and magnetic fields. Am J Public Health. 2001;91(9):1355–8.PubMedPubMedCentralCrossRef
Jamroziak K, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol. 2004;72(5):314–21.PubMedCrossRef
Jamroziak K, et al. Multi-drug transporter MDR1 gene polymorphism and prognosis in adult acute lymphoblastic leukemia. Pharmacol Rep: PR. 2005;57(6):882–8.PubMed
Jensen CD, et al. Maternal dietary risk factors in childhood acute lymphoblastic leukemia (United States). Cancer Causes Control: CCC. 2004;15(6):559–70.PubMedCrossRef
Joannides M, Grimwade D. Molecular biology of therapy-related leukaemias. Clin Trans Oncol: Off Publ Feder Span Oncol Soc Natl Cancer Inst Mex. 2010;12(1):8–14.CrossRef
Jones TL, et al. Selection bias from differential residential mobility as an explanation for associations of wire codes with childhood cancer. J Clin Epidemiol. 1993;46(6):545–8.PubMedCrossRef
Keegan TJ, et al. Case-control study of paternal occupation and childhood leukaemia in Great Britain, 1962–2006. Br J Cancer. 2012;107(9):1652–9.PubMedPubMedCentralCrossRef
Kheifets L, Shimkhada R. Childhood leukemia and EMF: review of the epidemiologic evidence. Bioelectromagnetics Suppl. 2005;7:S51–9.CrossRef
Kheifets L, Mezei G, Greenland S. Comment concerning “Childhood leukemia and residential magnetic fields: are pooled analyses more valid than the original studies?” (Bioelectromagnetics 27:1–7 [2006]). Bioelectromagnetics. 2006;27(8):674–5; discussion 675–6.PubMedCrossRef
Kheifets L, et al. A pooled analysis of extremely low-frequency magnetic fields and childhood brain tumors. Am J Epidemiol. 2010a;172(7):752–61.PubMedPubMedCentralCrossRef
Kheifets L, et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer. 2010b;103(7):1128–35.PubMedPubMedCentralCrossRef
Kim YI. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr Rev. 2000;58(7):205–9.PubMedCrossRef
Kinlen LJ. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer. 1995;71(1):1–5.PubMedPubMedCentralCrossRef
Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science (New York, NY). 1998;280(5366):1036–7.CrossRef
Kotnis A, Sarin R, Mulherkar R. Genotype, phenotype and cancer: role of low penetrance genes and environment in tumour susceptibility. J Biosci. 2005;30(1):93–102.PubMedCrossRef
Kraft P, Cox DG. Study designs for genome-wide association studies. Adv Genet. 2008;60:465–504.PubMedCrossRef
Krajinovic M, et al. Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene-gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2000;9(6):557–62.
Krajinovic M, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood. 2004;103(1):252–7.PubMedCrossRef
Kratz CP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood. 2005;106(6):2183–5.PubMedPubMedCentralCrossRef
Kusters MAA, et al. Intrinsic defect of the immune system in children with Down syndrome: a review. Clin Exp Immunol. 2009;156(2):189–93.PubMedPubMedCentralCrossRef
Kwan ML, et al. Maternal diet and risk of childhood acute lymphoblastic leukemia. Publ Health Rep (Washington, DC). 2009;124(4):503–14.
Labuda D, et al. Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem. 1999;275(1):84–92.PubMedCrossRef
Lagroye I, et al. ELF magnetic fields: animal studies, mechanisms of action. Prog Biophys Mol Biol. 2011;107(3):369–73.PubMedCrossRef
Levine EG, Bloomfield CD. Secondary myelodysplastic syndromes and leukaemias. Clin Haematol. 1986;15(4):1037–80.PubMed
Lim JY-S, et al. Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia. Cancer. 2014;120(7):955–62.PubMedPubMedCentralCrossRef
Linabery AM, et al. The association between atopy and childhood/adolescent leukemia: a meta-analysis. Am J Epidemiol. 2010;171(7):749–64.PubMedPubMedCentralCrossRef
Ludwig W-D, et al. Classification of acute leukemias. Perspective 1 – perspective 2. In: Pui C-H, editor. Treatment of acute leukemias: new directions for clinical research. Totowa: Humana Press; 2003. p. 3–58.
Margolin J, Steuber C, Poplack D. Acute lymphocytic leukemia. In: Pizzo P, Poplack D, editors. Principles and practice of pediatric oncology. Philadelphia: JB Lippincott; 2006. p. 538–90.
McEvoy MW, Mann JR. Neurofibromatosis with leukaemia. Br Med J. 1971;3(5775):641.PubMedPubMedCentralCrossRef
McNally RJQ, Eden TOB. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol. 2004;127(3):243–63.PubMedCrossRef
Meinert R, et al. Leukemia and non-Hodgkin’s lymphoma in childhood and exposure to pesticides: results of a register-based case-control study in Germany. Am J Epidemiol. 2000;151(7):639–46; discussion 647–50.PubMedCrossRef
Mejía-Arangure JM. Model for identifying the etiology of acute lymphoblastic leukemia in children. In: Mejia-Arangure JM, editor. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. Rijeka, Croatia: InTech; 2013. p. 342.
Mejía-Aranguré JM, et al. Environmental factors contributing to the development of childhood leukemia in children with Down’s syndrome. Leuk: Off J Leuk Soc Am Leuk Res Fund UK. 2003;17(9):1905–7.
Mejia-Arangure JM, et al. Magnetic fields and acute leukemia in children with Down syndrome. Epidemiology (Cambridge, Mass). 2007;18(1):158–61.CrossRef
Metayer C, Milne E, et al. The childhood leukemia international consortium. Cancer Epidemiol. 2013a;37(3):336–47.PubMedPubMedCentralCrossRef
Metayer C, Zhang L, et al. Tobacco smoke exposure and the risk of childhood acute lymphoblastic and myeloid leukemias by cytogenetic subtype. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2013b;22(9):1600–11.CrossRef
Mezei G, et al. Assessment of selection bias in the Canadian case-control study of residential magnetic field exposure and childhood leukemia. Am J Epidemiol. 2008;167(12):1504–10.PubMedCrossRef
Mezei G, et al. Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol. 2014;38(5):479–89.PubMedCrossRef
Miller R. Epidemiologic conclusions from radiation toxicity studies. In: Fry R, editor. Late effects of radiation: proceedings of the colloquium held at the center for continuing education. Illinois: University of Chicago; 1969. p. 1970.
Milne E, et al. Parental prenatal smoking and risk of childhood acute lymphoblastic leukemia. Am J Epidemiol. 2012;175(1):43–53.PubMedCrossRef
Moldovan G-L, D’Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet. 2009;43:223–49.PubMedPubMedCentralCrossRef
Monge P, et al. Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. Scand J Work Environ Health. 2007;33(4):293–303.PubMedCrossRef
Morales-Sánchez A, et al. Lack of evidence for human T-lymphotropic virus type 1 and mouse mammary tumor-like virus involvement in the genesis of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2013;22(11):2130–3.CrossRef
Myhr AI. A precautionary approach to genetically modified organisms: challenges and Implications for policy and science. J Agric Environ Ethics. 2010;23(6):501–25.CrossRef
National Research Council (US)/Committee on the Possible Effects of Electromagnetic Fields on Biologic Systems. Possible health effects of exposure to residential electric and magnetic fields. Washington, DC: National Academy Press (US); 1997.
Niemeyer CM, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42(9):794–800.PubMedPubMedCentralCrossRef
Niihori T, et al. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet. 2005;50(4):192–202.PubMedCrossRef
Núñez-Enríquez JC, et al. Allergy and acute leukaemia in children with Down syndrome: a population study. Report from the Mexican inter-institutional group for the identification of the causes of childhood leukaemia. Br J Cancer. 2013;108(11):2334–8.PubMedPubMedCentralCrossRef
O’Leary LM, et al. Parental occupational exposures and risk of childhood cancer: a review. Am J Ind Med. 1991;20(1):17–35.PubMedCrossRef
Patrick K, et al. Outcome of Down syndrome associated acute lymphoblastic leukaemia treated on a contemporary protocol. Br J Haematol. 2014;165(4):552–5.PubMedCrossRef
Parkin DM, Kramarova E, Draper GJ, Masuyer E, Michaelis J, Neglia J, Qureshi S, Stiller CA, eds. International Incidence of Childhood Cancer vol. 2. IARC Scientific Publications no. 144. Lyon: International Agency for Research on Cancer. 1998.
Pedersen-Bjergaard J, Andersen MK, Johansson B. Balanced chromosome aberrations in leukemias following chemotherapy with DNA-topoisomerase II inhibitors. J Clin Oncol: Off J Am Soc Clin Oncol. 1998;16(5):1897–8.
Perentesis JP. Genetic predisposition and treatment-related leukemia. Med Pediatr Oncol. 2001;36(5):541–8.PubMedCrossRef
Perez-Saldivar ML, et al. Father’s occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case-control study). BMC Cancer. 2008;8:7.PubMedPubMedCentralCrossRef
Pérez-Saldivar ML, et al. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology. BMC Cancer. 2011;11:355.PubMedPubMedCentralCrossRef
Petridou E, et al. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14(8):1935–9.CrossRef
Pizzo P. Principles and practice of pediatric oncology. 6th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2011.
Popp HD, Bohlander SK. Genetic instability in inherited and sporadic leukemias. Genes Chromosome Cancer. 2010;49(12):1071–81.CrossRef
Poppe B, et al. Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet. 2001;128(1):39–42.PubMedCrossRef
Ratain MJ, et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood. 1987;70(5):1412–7.PubMed
Resnik DB. The precautionary principle and medical decision making. J Med Philos. 2004;29(3):281–99.PubMedCrossRef
Riley RJ, Workman P. DT-diaphorase and cancer chemotherapy. Biochem Pharmacol. 1992;43(8):1657–69.PubMedCrossRef
Rosenbaum PF, Buck GM, Brecher ML. Allergy and infectious disease histories and the risk of childhood acute lymphoblastic leukaemia. Paediatr Perinat Epidemiol. 2005;19(2):152–64.PubMedCrossRef
Rosenberg PS, Greene MH, Alter BP. Cancer incidence in persons with Fanconi anemia. Blood. 2003;101(3):822–6.PubMedCrossRef
Ross JA, et al. Periconceptional vitamin use and leukemia risk in children with Down syndrome: a Children’s Oncology Group study. Cancer. 2005;104(2):405–10.PubMedCrossRef
Rothman KJ. Methodologic frontiers in environmental epidemiology. Environ Health Perspect. 1993;101(Suppl):19–21.PubMedPubMedCentralCrossRef
Rowley JD. The role of chromosome translocations in leukemogenesis. Semin Hematol. 1999;36(4 Suppl 7):59–72.PubMed
Rudant J, et al. Childhood acute leukemia, early common infections, and allergy: the ESCALE Study. Am J Epidemiol. 2010;172(9):1015–27.PubMedCrossRef
Sanderson RN, et al. Population-based demographic study of karyotypes in 1709 patients with adult acute myeloid leukemia. Leukemia. 2006;20(3):444–50.PubMedCrossRef
Sanz MM, German J. Bloom’s syndrome. In: Pagon R, Adam M, Ardinger H, editors. GeneReviews®. Seattle: University of Washington, Seattle; 2014.
Savage SA. Genomic clues to ethnic differences in ALL. Blood. 2014;123(16):2440–2.PubMedPubMedCentralCrossRef
Savitz DA, Chen JH. Parental occupation and childhood cancer: review of epidemiologic studies. Environ Health Perspect. 1990;88:325–37.PubMedPubMedCentralCrossRef
Schmiegelow K, et al. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis. Leukemia. 2008;22(12):2137–41.PubMedCrossRef
Schneider M, et al. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults. Clin Genet. 2015;88(1):13–24.
Schoch C, et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2004;18(1):120–5.PubMedCrossRef
Schüz J, et al. Atopic disease and childhood acute lymphoblastic leukemia. Int J Cancer J Int Cancer. 2003;105(2):255–60.CrossRef
Schüz J, et al. Nighttime exposure to electromagnetic fields and childhood leukemia: an extended pooled analysis. Am J Epidemiol. 2007;166(3):263–9.PubMedCrossRef
Seif AE. Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet. 2011;204(5):227–44.PubMedCrossRef
Sermage-Faure C, et al. Childhood leukaemia close to high-voltage power lines – the Geocap study, 2002–2007. Br J Cancer. 2013;108(9):1899–906.PubMedPubMedCentralCrossRef
Shannon KM, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330(9):597–601.PubMedCrossRef
Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22.PubMedPubMedCentralCrossRef
Shu XO, et al. Parental exposure to medications and hydrocarbons and ras mutations in children with acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2004;13(7):1230–5.
Siegel D, Ross D. Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic Biol Med. 2000;29(3–4):246–53.PubMedCrossRef
Siegel D, Kepa JK, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) localizes to the mitotic spindle in human cells. PLoS ONE. 2012a;7(9):e44861.PubMedPubMedCentralCrossRef
Siegel R, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012b;62(4):220–41.PubMedCrossRef
Sinnett D, Krajinovic M, Labuda D. Genetic susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2000;38(5–6):447–62.PubMedCrossRef
Slovak ML, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075–83.PubMed
Smith M. Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood. J Immunother. 1997;20(2):89–100.PubMedCrossRef
Söderberg KC, et al. Allergic conditions and risk of hematological malignancies in adults: a cohort study. BMC Public Health. 2004;4:51.PubMedPubMedCentralCrossRef
Söderberg KC, et al. Autoimmune diseases, asthma and risk of haematological malignancies: a nationwide case-control study in Sweden. Eur J Cancer (Oxford, England). 2006;42(17):3028–33.CrossRef
Spector L, et al. Medically recorded allergies and the risk of childhood acute lymphoblastic leukaemia. Eur J Cancer (Oxford, England). 2004;40(4):579–84.CrossRef
Stewart A, Kneale GW. Radiation dose effects in relation to obstetric x-rays and childhood cancers. Lancet. 1970;1(7658):1185–8.PubMedCrossRef
Stewart A, et al. Preliminary communication: malignant disease in childhood and diagnostic irradiation in-utero. Lancet. 1956;2:447.CrossRef
Stijkel A, Reijnders L. Implementation of the precautionary principle in standards for the workplace. Occup Environ Med. 1995;52(5):304–12.PubMedPubMedCentralCrossRef
Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994;70(5):969–72.PubMedPubMedCentralCrossRef
Straughen J, et al. Physical mapping of the bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1. Genomics. 1996;35(1):118–28.PubMedCrossRef
Strick R, et al. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A. 2000;97(9):4790–5.PubMedPubMedCentralCrossRef
Strullu M, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet. 2014;51(10):689–97.PubMedCrossRef
Swanson J, Kheifets L. Could the geomagnetic field be an effect modifier for studies of power-frequency magnetic fields and childhood leukaemia? J Radiol Prot: Off J Soc Radiol Prot. 2012;32(4):413–8.CrossRef
Tartaglia M, Zampino G, Gelb BD. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromology. 2010;1(1):2–26.CrossRef
Thompson JR, et al. Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet. 2001;358(9297):1935–40.PubMedCrossRef
Tickner JA. Precaution, environmental science, and preventive public policy. New Solutions: J Environ Occup Health Policy: NS. 2003;13(3):275–82.CrossRef
Tower RL, Spector LG. The epidemiology of childhood leukemia with a focus on birth weight and diet. Crit Rev Clin Lab Sci. 2007;44(3):203–42.PubMedCrossRef
Urayama KY, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol. 2010;39(3):718–32.PubMedPubMedCentralCrossRef
Van Maele-Fabry G, et al. Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis. Cancer Causes Control: CCC. 2010;21(6):787–809.PubMedCrossRef
Vaz F, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42(5):406–9.PubMedCrossRef
Ward G. The infective theory of acute leukemia. Br J Childhood’s Dis. 1917;14:10–20.
Ward EM, et al. Priorities for development of research methods in occupational cancer. Environ Health Perspect. 2003;111(1):1–12.PubMedPubMedCentral
Weisberg I, et al. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72.PubMedCrossRef
Wen W, et al. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer. 2002;95(8):1786–94.PubMedCrossRef
Wiedemann PM, Schütz H. The precautionary principle and risk perception: experimental studies in the EMF area. Environ Health Perspect. 2005;113(4):402–5.PubMedPubMedCentralCrossRef
Wiemels JL, et al. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res. 1999;59(16):4095–9.PubMed
Wynder EL. Invited commentary: studies in mechanism and prevention. Striking a proper balance. Am J Epidemiol. 1994;139(6):547–9.PubMed
Yan Y, et al. Association of MDR1 G2677T polymorphism and leukemia risk: evidence from a meta-analysis. Tumour Biol: J Int Soc Oncodevelopment Biol Med. 2014;35(3):2191–7.CrossRef
Yohay K. Neurofibromatosis type 1 and associated malignancies. Curr Neurol Neurosci Rep. 2009;9(3):247–53.PubMedCrossRef
Zack M, et al. Cancer in children of parents exposed to hydrocarbon-related industries and occupations. Am J Epidemiol. 1980;111(3):329–36.PubMed
Zvulunov A. Juvenile xanthogranuloma, neurofibromatosis, and juvenile chronic myelogenous leukemia. Arch Dermatol. 1996;132(6):712–3.PubMedCrossRef