Skip to main content
Top

22-06-2017 | PARP inhibitors | Article

Targeting DNA repair and replication stress in the treatment of ovarian cancer

Journal: International Journal of Clinical Oncology

Author: Junko Murai

Publisher: Springer Japan

Abstract

Approximately half of high-grade serous epithelial ovarian cancers incur alterations in genes of homologous recombination (BRCA1, BRCA2, RAD51C, Fanconi anemia genes), and the rest incur alterations in other DNA repair pathways at high frequencies. Such cancer-specific gene alterations can confer selective sensitivity to DNA damaging agents such as cisplatin and carboplatin, topotecan, etoposide, doxorubicin, and gemcitabine. Originally presumed to inhibit DNA repair, PARP inhibitors that have recently been approved by the FDA for the treatment of advanced ovarian cancer also act as DNA damaging agents by inducing PARP–DNA complexes. These DNA damaging agents induce different types of DNA lesions that require various DNA repair genes for the repair, but commonly induce replication fork slowing or stalling, also referred to as replication stress. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. Hence, targeting DNA repair genes or DNA repair checkpoint genes augments the anti-tumor activity of DNA damaging agents. This review describes the rational basis for using DNA repair and DNA repair checkpoint inhibitors as single agents. The review also presents the strategies combining these inhibitors with DNA damaging agents for ovarian cancer therapy based on specific gene alterations.
Literature
1.
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.​1016/​j.​cell.​2011.​02.​013 CrossRefPubMed
2.
Vesela E, Chroma K, Turi Z et al (2017) Common chemical inductors of replication stress: focus on cell-based studies. Biomolecules. doi:10.​3390/​biom7010019 PubMedPubMedCentral
3.
Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6(10):789–802CrossRefPubMed
4.
Strumberg D, Pilon AA, Smith M et al (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20(11):3977–3987CrossRefPubMedPubMedCentral
5.
Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584. doi:10.​1038/​nrc2167 CrossRefPubMed
6.
Dietlein F, Thelen L, Reinhardt HC (2014) Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet 30(8):326–339. doi:10.​1016/​j.​tig.​2014.​06.​003 CrossRefPubMed
7.
Reinhold WC, Varma S, Sousa F et al (2014) NCI-60 whole exome sequencing and pharmacological Cell Miner analyses. PLoS One 9(7):e101670. doi:10.​1371/​journal.​pone.​0101670 CrossRefPubMedPubMedCentral
8.
Varma S, Pommier Y, Sunshine M et al (2014) High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through Cell Miner. PLoS One 9(3):e92047. doi:10.​1371/​journal.​pone.​0092047 CrossRefPubMedPubMedCentral
9.
Reinhold WC, Sunshine M, Varma S et al (2015) Using cell miner 1.6 for systems pharmacology and genomic analysis of the NCI-60. Clin Cancer Res 21(17):3841–3852. doi:10.​1158/​1078-0432.​CCR-15-0335 CrossRefPubMedPubMedCentral
10.
Sousa FG, Matuo R, Tang SW et al (2015) Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair (Amst) 28:107–115. doi:10.​1016/​j.​dnarep.​2015.​01.​011 CrossRef
11.
Reinhold WC, Varma S, Sunshine M et al (2017) The NCI-60 methylome and its integration into CellMiner. Cancer Res 77(3):601–612. doi:10.​1158/​0008-5472.​CAN-16-0655 CrossRefPubMed
12.
Konstantinopoulos PA, Ceccaldi R, Shapiro GI et al (2015) Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 5(11):1137–1154. doi:10.​1158/​2159-8290.​CD-15-0714 CrossRefPubMedPubMedCentral
13.
Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615. doi:10.​1038/​nature10166 CrossRef
14.
Bajrami I, Frankum JR, Konde A et al (2014) Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res 74(1):287–297. doi:10.​1158/​0008-5472.​CAN-13-2541 CrossRefPubMed
15.
Kennedy RD, D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24(23):3799–3808. doi:10.​1200/​JCO.​2005.​05.​4171 CrossRefPubMed
16.
Burrell RA, Swanton C (2014) Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol 8(6):1095–1111. doi:10.​1016/​j.​molonc.​2014.​06.​005 CrossRefPubMed
17.
Shigetomi H, Higashiura Y, Kajihara H et al (2012) Targeted molecular therapies for ovarian cancer: an update and future perspectives (review). Oncol Rep 28(2):395–408. doi:10.​3892/​or.​2012.​1833 PubMed
18.
Kelley MR, Logsdon D, Fishel ML (2014) Targeting DNA repair pathways for cancer treatment: what’s new? Future Oncol 10(7):1215–1237. doi:10.​2217/​fon.​14.​60 CrossRefPubMedPubMedCentral
19.
Stover EH, Konstantinopoulos PA, Matulonis UA et al (2016) Biomarkers of response and resistance to DNA repair targeted therapies. Clin Cancer Res 22(23):5651–5660. doi:10.​1158/​1078-0432.​CCR-16-0247 CrossRefPubMed
20.
Brown JS, O’Carrigan B, Jackson SP et al (2017) Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 7(1):20–37. doi:10.​1158/​2159-8290.​CD-16-0860 CrossRefPubMed
21.
McLornan DP, List A, Mufti GJ (2014) Applying synthetic lethality for the selective targeting of cancer. N Engl J Med 371(18):1725–1735. doi:10.​1056/​NEJMra1407390 CrossRefPubMed
22.
Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917. doi:10.​1038/​nature03443 CrossRefPubMed
23.
Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. doi:10.​1038/​nature03445 CrossRefPubMed
24.
Davidson D, Amrein L, Panasci L et al (2013) Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond. Front Pharmacol 4:5. doi:10.​3389/​fphar.​2013.​00005 CrossRefPubMedPubMedCentral
25.
Willmore E, de Caux S, Sunter NJ et al (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103(12):4659–4665. doi:10.​1182/​blood-2003-07-2527 CrossRefPubMed
26.
Lin AB, McNeely SC, Beckmann RP (2017) Achieving precision death with cell cycle inhibitors that target DNA replication and repair. Clin Cancer Res. doi:10.​1158/​1078-0432.​CCR-16-0083
27.
Srivas R, Shen JP, Yang CC et al (2016) A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Mol Cell 63(3):514–525. doi:10.​1016/​j.​molcel.​2016.​06.​022 CrossRefPubMed
28.
Mohni KN, Kavanaugh GM, Cortez D (2014) ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res 74(10):2835–2845. doi:10.​1158/​0008-5472.​CAN-13-3229 CrossRefPubMedPubMedCentral
29.
Maede Y, Shimizu H, Fukushima T et al (2014) Differential and common DNA repair pathways for topoisomerase I- and II-targeted drugs in a genetic DT40 repair cell screen panel. Mol Cancer Ther 13(1):214–220. doi:10.​1158/​1535-7163.​MCT-13-0551 CrossRefPubMed
30.
Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599. doi:10.​1158/​0008-5472.​CAN-12-2753 CrossRefPubMedPubMedCentral
31.
Bruno PM, Liu Y, Park GY et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23(4):461–471. doi:10.​1038/​nm.​4291 CrossRefPubMed
32.
Joshi PM, Sutor SL, Huntoon CJ et al (2014) Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J Biol Chem 289(13):9247–9253. doi:10.​1074/​jbc.​M114.​551143 CrossRefPubMedPubMedCentral
33.
Dedes KJ, Wetterskog D, Mendes-Pereira AM et al (2010) PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med 2(53):5375. doi:10.​1126/​scitranslmed.​3001538 CrossRef
34.
McEllin B, Camacho CV, Mukherjee B et al (2010) PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res 70(13):5457–5464. doi:10.​1158/​0008-5472.​CAN-09-4295 CrossRefPubMedPubMedCentral
35.
Chernikova SB, Game JC, Brown JM (2012) Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther 13(2):61–68. doi:10.​4161/​cbt.​13.​2.​18872 CrossRefPubMedPubMedCentral
36.
Nemec AA, Wallace SS, Sweasy JB (2010) Variant base excision repair proteins: contributors to genomic instability. Semin Cancer Biol 20(5):320–328. doi:10.​1016/​j.​semcancer.​2010.​10.​010 CrossRefPubMedPubMedCentral
37.
Fishel ML, He Y, Smith ML et al (2007) Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res 13(1):260–267. doi:10.​1158/​1078-0432.​CCR-06-1920 CrossRefPubMed
38.
Allinson SL (2010) DNA end-processing enzyme polynucleotide kinase as a potential target in the treatment of cancer. Future Oncol 6(6):1031–1042. doi:10.​2217/​fon.​10.​40 CrossRefPubMed
39.
Jaiswal AS, Banerjee S, Panda H et al (2009) A novel inhibitor of DNA polymerase beta enhances the ability of temozolomide to impair the growth of colon cancer cells. Mol Cancer Res 7(12):1973–1983. doi:10.​1158/​1541-7786.​MCR-09-0309 CrossRefPubMedPubMedCentral
40.
Tang JB, Svilar D, Trivedi RN et al (2011) N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro Oncol 13(5):471–486. doi:10.​1093/​neuonc/​nor011 CrossRefPubMedPubMedCentral
41.
Sultana R, McNeill DR, Abbotts R et al (2012) Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int J Cancer 131(10):2433–2444. doi:10.​1002/​ijc.​27512 CrossRefPubMedPubMedCentral
42.
Wang Y, Ghosh G, Hendrickson EA (2009) Ku86 represses lethal telomere deletion events in human somatic cells. Proc Natl Acad Sci USA 106(30):12430–12435. doi:10.​1073/​pnas.​0903362106 CrossRefPubMedPubMedCentral
43.
Weterings E, Gallegos AC, Dominick LN et al (2016) A novel small molecule inhibitor of the DNA repair protein Ku70/80. DNA Repair (Amst) 43:98–106. doi:10.​1016/​j.​dnarep.​2016.​03.​014 CrossRef
44.
Murai J, Zhang Y, Morris J et al (2014) Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharmacol Exp Ther 349(3):408–416. doi:10.​1124/​jpet.​113.​210146 CrossRefPubMedPubMedCentral
45.
Dungl DA, Maginn EN, Stronach EA (2015) Preventing damage limitation: targeting DNA-PKcs and DNA double-strand break repair pathways for ovarian cancer therapy. Front Oncol 5:240. doi:10.​3389/​fonc.​2015.​00240 CrossRefPubMedPubMedCentral
46.
McFadden MJ, Lee WK, Brennan JD et al (2014) Delineation of key XRCC4/Ligase IV interfaces for targeted disruption of non-homologous end joining DNA repair. Proteins 82(2):187–194. doi:10.​1002/​prot.​24349 CrossRefPubMed
47.
Srivastava M, Nambiar M, Sharma S et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151(7):1474–1487. doi:10.​1016/​j.​cell.​2012.​11.​054 CrossRefPubMed
48.
Greco GE, Matsumoto Y, Brooks RC et al (2016) SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair (Amst) 43:18–23. doi:10.​1016/​j.​dnarep.​2016.​04.​004 CrossRef
49.
Moldovan GL, D’Andrea AD (2009) How the fanconi anemia pathway guards the genome. Annu Rev Genet 43:223–249. doi:10.​1146/​annurev-genet-102108-134222 CrossRefPubMedPubMedCentral
50.
Arora S, Heyza J, Zhang H et al (2016) Identification of small molecule inhibitors of ERCC1-XPF that inhibit DNA repair and potentiate cisplatin efficacy in cancer cells. Oncotarget 7(46):75104–75117. doi:10.​18632/​oncotarget.​12072 PubMedPubMedCentral
51.
Gentile F, Tuszynski JA, Barakat KH (2016) New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy. J Mol Graph Model 65:71–82. doi:10.​1016/​j.​jmgm.​2016.​02.​010 CrossRefPubMed
52.
Fadda E (2013) Conformational determinants for the recruitment of ERCC1 by XPA in the nucleotide excision repair (NER) Pathway: structure and dynamics of the XPA binding motif. Biophys J 104(11):2503–2511. doi:10.​1016/​j.​bpj.​2013.​04.​023 CrossRefPubMedPubMedCentral
53.
Voter AF, Manthei KA, Keck JL (2016) A high-throughput screening strategy to identify protein-protein interaction inhibitors that block the Fanconi Anemia DNA repair pathway. J Biomol Screen 21(6):626–633. doi:10.​1177/​1087057116635503​ CrossRefPubMedPubMedCentral
54.
Das DS, Das A, Ray A et al (2017) Blockade of deubiquitylating enzyme USP1 inhibits DNA repair and triggers apoptosis in multiple myeloma cells. Clin Cancer Res. doi:10.​1158/​1078-0432.​CCR-16-2692
55.
Inoue A, Kikuchi S, Hishiki A et al (2014) A small molecule inhibitor of monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. J Biol Chem 289(10):7109–7120. doi:10.​1074/​jbc.​M113.​520429 CrossRefPubMedPubMedCentral
56.
Actis ML, Ambaye ND, Evison BJ et al (2016) Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction. Bioorg Med Chem 24(18):4339–4346. doi:10.​1016/​j.​bmc.​2016.​07.​026 CrossRefPubMed
57.
Zeng Z, Sharma A, Ju L et al (2012) TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Res 40(17):8371–8380. doi:10.​1093/​nar/​gks622 CrossRefPubMedPubMedCentral
58.
Pommier Y, Huang SY, Gao R et al (2014) Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst) 19:114–129. doi:10.​1016/​j.​dnarep.​2014.​03.​020 CrossRef
59.
Murai J, Huang SY, Das BB et al (2012) Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylation in vertebrate cells. J Biol Chem 287(16):12848–12857. doi:10.​1074/​jbc.​M111.​333963 CrossRefPubMedPubMedCentral
60.
Huang SN, Pommier Y, Marchand C (2011) Tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Expert Opin Ther Pat 21(9):1285–1292. doi:10.​1517/​13543776.​2011.​604314 CrossRefPubMedPubMedCentral
61.
Marchand C, Abdelmalak M, Kankanala J et al (2016) Deazaflavin inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2) specific for the human enzyme and active against cellular TDP2. ACS Chem Biol 11(7):1925–1933. doi:10.​1021/​acschembio.​5b01047 CrossRefPubMed
62.
Das BB, Huang SY, Murai J et al (2014) PARP1-TDP1 coupling for the repair of topoisomerase I-induced DNA damage. Nucleic Acids Res 42(7):4435–4449. doi:10.​1093/​nar/​gku088 CrossRefPubMedPubMedCentral
63.
Murai J, Marchand C, Shahane SA et al (2014) Identification of novel PARP inhibitors using a cell-based TDP1 inhibitory assay in a quantitative high-throughput screening platform. DNA Repair (Amst) 21:177–182. doi:10.​1016/​j.​dnarep.​2014.​03.​006 CrossRef
64.
Schreiber V, Dantzer F, Ame JC et al (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528CrossRefPubMed
65.
Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082CrossRefPubMed
66.
Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. doi:10.​1016/​j.​molcel.​2010.​06.​017 CrossRefPubMedPubMedCentral
67.
Rouleau M, Patel A, Hendzel MJ et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301. doi:10.​1038/​nrc2812 CrossRefPubMedPubMedCentral
68.
Juarez-Salinas H, Sims JL, Jacobson MK (1979) Poly(ADP-ribose) levels in carcinogen-treated cells. Nature 282(5740):740–741CrossRefPubMed
69.
Benjamin RC, Gill DM (1980) ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J Biol Chem 255(21):10493–10501PubMed
70.
Durkacz BW, Omidiji O, Gray DA et al (1980) (ADP-ribose)n participates in DNA excision repair. Nature 283(5747):593–596CrossRefPubMed
71.
Masson M, Niedergang C, Schreiber V et al (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18(6):3563–3571CrossRefPubMedPubMedCentral
72.
El-Khamisy SF, Masutani M, Suzuki H et al (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31(19):5526–5533CrossRefPubMedPubMedCentral
73.
Shen Y, Rehman FL, Feng Y et al (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19(18):5003–5015. doi:10.​1158/​1078-0432.​CCR-13-1391 CrossRefPubMed
74.
Murai J, Huang SY, Renaud A et al (2014) Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther 13(2):433–443. doi:10.​1158/​1535-7163.​MCT-13-0803 CrossRefPubMed
75.
Murai J, Pommier Y (2015) Classification of PARP inhibitors based on PARP trapping and catalytic inhibition, and rationale for combinations with topoisomerase I inhibitors and alkylating agents. Cancer Drug Discov D 83:261–274. doi:10.​1007/​978-3-319-14151-0_​10 CrossRef
76.
Pommier Y, O'Connor MJ, de Bono J (2016) Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8(362):362. doi:10.​1126/​scitranslmed.​aaf9246 CrossRef
77.
Murai J, Feng Y, Yu GK et al (2016) Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget 7(47):76534–76550. doi:10.​18632/​oncotarget.​12266 PubMedPubMedCentral
78.
O’Sullivan CC, Moon DH, Kohn EC et al (2014) Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors. Front Oncol 4:42. doi:10.​3389/​fonc.​2014.​00042 PubMedPubMedCentral
79.
Helleday T (2016) PARP inhibitor receives FDA breakthrough therapy designation in castration resistant prostate cancer: beyond germline BRCA mutations. Ann Oncol 27(5):755–757. doi:10.​1093/​annonc/​mdw048 CrossRefPubMed
80.
Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9. doi:10.​1038/​ncb2897 CrossRefPubMedPubMedCentral
81.
Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9(8):616–627. doi:10.​1038/​nrm2450 CrossRefPubMedPubMedCentral
82.
Yekezare M, Gomez-Gonzalez B, Diffley JF (2013) Controlling DNA replication origins in response to DNA damage − inhibit globally, activate locally. J Cell Sci 126(Pt 6):1297–1306. doi:10.​1242/​jcs.​096701 CrossRefPubMed
83.
Mechali M (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11(10):728–738. doi:10.​1038/​nrm2976 CrossRefPubMed
84.
Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308. doi:10.​1038/​nrm2351 CrossRefPubMed
85.
Feijoo C, Hall-Jackson C, Wu R et al (2001) Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol 154(5):913–923. doi:10.​1083/​jcb.​200104099 CrossRefPubMedPubMedCentral
86.
King C, Diaz HB, McNeely S et al (2015) LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol Cancer Ther 14(9):2004–2013. doi:10.​1158/​1535-7163.​MCT-14-1037 CrossRefPubMed
87.
King C, Diaz H, Barnard D et al (2014) Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Invest New Drugs 32(2):213–226. doi:10.​1007/​s10637-013-0036-7 CrossRefPubMed
88.
Josse R, Martin SE, Guha R et al (2014) The ATR inhibitors VE-821 and VX-970 sensitize cancer cells to topoisomerase I inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res 74(23):6968–6979. doi:10.​1158/​0008-5472.​CAN-13-3369 CrossRefPubMedPubMedCentral
89.
Seiler JA, Conti C, Syed A et al (2007) The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and-DNA fiber analyses. Mol Cell Biol 27(16):5806–5818CrossRefPubMedPubMedCentral
90.
Toledo LI, Altmeyer M, Rask MB et al (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155(5):1088–1103. doi:10.​1016/​j.​cell.​2013.​10.​043 CrossRefPubMed
91.
Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23(2):103–109. doi:10.​1038/​nsmb.​3163 CrossRefPubMedPubMedCentral
92.
Syljuasen RG, Sorensen CS, Hansen LT et al (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25(9):3553–3562. doi:10.​1128/​MCB.​25.​9.​3553-3562.​2005 CrossRefPubMedPubMedCentral
93.
Beck H, Nahse-Kumpf V, Larsen MS et al (2012) Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol Cell Biol 32(20):4226–4236. doi:10.​1128/​MCB.​00412-12 CrossRefPubMedPubMedCentral
94.
Puigvert JC, Sanjiv K, Helleday T (2016) Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 283(2):232–245. doi:10.​1111/​febs.​13574 CrossRefPubMed
95.
Sanjiv K, Hagenkort A, Calderon-Montano JM et al (2016) Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. Cell Rep 17(12):3407–3416. doi:10.​1016/​j.​celrep.​2016.​12.​031 CrossRefPubMed
96.
McNeely S, Beckmann R, Bence Lin AK (2014) CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 142(1):1–10. doi:10.​1016/​j.​pharmthera.​2013.​10.​005 CrossRefPubMed
97.
Bowtell DD, Bohm S, Ahmed AA et al (2015) Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15(11):668–679. doi:10.​1038/​nrc4019 CrossRefPubMedPubMedCentral
98.
Lord CJ, Ashworth A (2016) BRCAness revisited. Nat Rev Cancer 16(2):110–120. doi:10.​1038/​nrc.​2015.​21 CrossRefPubMed
99.
Murai J, Pommier Y (2015) Classification of PARP inhibitors based on PAPR trapping and catalytic inhibition, and rationale for combination with topoisomerase I inhibitors and alkylating agents. In: Sharma NJCARA (ed) PARP inhibitors for cancer therapy, vol 83. Springer International Publishing, Switzerland. doi:10.​1007/​978-3-319-14151-0 CrossRef