Skip to main content
Top

14-06-2015 | PARP inhibitors | Book chapter | Article

23. Combination of PARP Inhibitors with Clinical Radiotherapy

Authors: Ross Carruthers, Anthony J Chalmers

Publisher: Springer International Publishing

Abstract

Radiosensitisation of solid tumours by manipulation of the DNA damage response offers an opportunity to increase the effectiveness of radiotherapy in terms of enhanced local tumour control, better alleviation of symptoms and improved cure rates. PARP inhibitors are the best characterised DNA damage response inhibitors and possess many qualities that predict clinical utility as radiosensitisers. Pre-clinical data indicate that PARP inhibitors will provide tumour specific radiosensitisation and may be effective radiosensitisers of hypoxic tumour cells and cancer stem cells. They have minimal systemic toxicity as single agents and if combined with modern radiotherapy technology are likely to have acceptable ‘in-field’ toxicity. As such, they represent ideal candidate radiosensitisers for development in clinical trials. Significant challenges and opportunities exist in designing appropriate clinical trials that will assess toxicity and benefit from these agents in a rigorous manner. This chapter reviews the clinical rationale for the use of PARP inhibitors as radiosensitisers and summarises their current clinical development.
Literature
1.
Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6):1129–1137. doi:10.1002/cncr.21324PubMedCrossRef
2.
Schaue D, McBride WH (2005) Counteracting tumor radioresistance by targeting DNA repair. Mol Cancer Ther 4(10):1548–1550. doi:10.1158/1535-7163.MCT-05-CO1PubMedCrossRef
3.
Fleck O, Nielsen O (2004) DNA repair. J Cell Sci 117(Pt 4):515–517. doi:10.1242/jcs.00952PubMedCrossRef
4.
Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078. doi:10.1038/nature08467PubMedCentralPubMedCrossRef
5.
Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751(2):158–246. doi:10.1016/j.mrrev.2012.06.002PubMedCrossRef
6.
Hiom K (2010) Coping with DNA double strand breaks. DNA Repair 9(12):1256–1263. doi:10.1016/j.dnarep.2010.09.018PubMedCrossRef
7.
Bartkova J, Hamerlik P, Stockhausen MT, Ehrmann J, Hlobilkova A, Laursen H, Kalita O, Kolar Z, Poulsen HS, Broholm H, Lukas J, Bartek J (2010) Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 29(36):5095–5102. doi:10.1038/onc.2010.249PubMedCrossRef
8.
Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870. doi:10.1038/nature03482PubMedCrossRef
9.
Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG, Pol E, Frostell A, Ekblad T, Oncu D, Kull B, Robertson GM, Pellicciari R, Schuler H, Weigelt J (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nature Biotechnol 30(3):283–288. doi:10.1038/nbt.2121CrossRef
10.
Brock WA, Milas L, Bergh S, Lo R, Szabo C, Mason KA (2004) Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Lett 205(2):155–160. doi:10.1016/j.canlet.2003.10.029PubMedCrossRef
11.
Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, Wang H, Sandler A, Johnson DH, Colevas AD, Low J, Rothenberg ML, Lu B (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res (an official journal of the American Association for Cancer Research) 13(10):3033–3042. doi:10.1158/1078-0432.CCR-06-2872PubMedCrossRef
12.
Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD, Cox BF, DeWeese TL, Dillehay LE, Ferguson DC, Ghoreishi-Haack NS, Grimm DR, Guan R, Han EK, Holley-Shanks RR, Hristov B, Idler KB, Jarvis K, Johnson EF, Kleinberg LR, Klinghofer V, Lasko LM, Liu X, Marsh KC, McGonigal TP, Meulbroek JA, Olson AM, Palma JP, Rodriguez LE, Shi Y, Stavropoulos JA, Tsurutani AC, Zhu GD, Rosenberg SH, Giranda VL, Frost DJ (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res (an official journal of the American association for cancer research) 13(9):2728–2737. doi:10.1158/1078-0432.CCR-06-3039PubMedCrossRef
13.
Russo AL, Kwon HC, Burgan WE, Carter D, Beam K, Weizheng X, Zhang J, Slusher BS, Chakravarti A, Tofilon PJ, Camphausen K (2009) In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res (an official journal of the American association for cancer research) 15(2):607–612. doi:10.1158/1078-0432.CCR-08-2079PubMedCrossRef
14.
Clarke MJ, Mulligan EA, Grogan PT, Mladek AC, Carlson BL, Schroeder MA, Curtin NJ, Lou Z, Decker PA, Wu W, Plummer ER, Sarkaria JN (2009) Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines. Mol Cancer Ther 8(2):407–414. doi:10.1158/1535-7163.MCT-08-0854PubMedCentralPubMedCrossRef
15.
Khan K, Araki K, Wang D, Li G, Li X, Zhang J, Xu W, Hoover RK, Lauter S, O'Malley B Jr, Lapidus RG, Li D (2010) Head and neck cancer radiosensitization by the novel poly(ADP-ribose) polymerase inhibitor GPI-15427. Head neck 32(3):381–391. doi:10.1002/hed.21195PubMed
16.
Noel G, Godon C, Fernet M, Giocanti N, Megnin-Chanet F, Favaudon V (2006) Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 5(3):564–574. doi:10.1158/1535-7163.MCT-05-0418PubMedCrossRef
17.
Loser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA, Chalmers AJ (2010) Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther 9(6):1775–1787. doi:10.1158/1535-7163.MCT-09-1027PubMedCentralPubMedCrossRef
18.
Galia A, Calogero AE, Condorelli R, Fraggetta F, La Corte A, Ridolfo F, Bosco P, Castiglione R, Salemi M (2012) PARP-1 protein expression in glioblastoma multiforme. Eur J Histochem: EJH 56(1):e9. doi:10.4081/ejh.2012.e9PubMedCentralPubMedCrossRef
19.
Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, Durkacz BW, Hostomsky Z, Kumpf RA, Kyle S, Li J, Maegley K, Newell DR, Notarianni E, Stratford IJ, Skalitzky D, Thomas HD, Wang LZ, Webber SE, Williams KJ, Curtin NJ (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96(1):56–67. doi:10.1093/Jnci/Djh005PubMedCrossRef
20.
Godon C, Cordelieres FP, Biard D, Giocanti N, Megnin-Chanet F, Hall J, Favaudon V (2008) PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res 36(13):4454–4464. doi:10.1093/nar/gkn403PubMedCentralPubMedCrossRef
21.
Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599. doi:10.1158/0008-5472.CAN-12-2753PubMedCentralPubMedCrossRef
22.
Ali M, Kamjoo M, Thomas HD, Kyle S, Pavlovska I, Babur M, Telfer BA, Curtin NJ, Williams KJ (2011) The clinically active PARP inhibitor AG014699 ameliorates cardiotoxicity but does not enhance the efficacy of doxorubicin, despite improving tumor perfusion and radiation response in mice. Mol Cancer Ther 10(12):2320–2329. doi:10.1158/1535-7163.MCT-11-0356PubMedCentralPubMedCrossRef
23.
Pyriochou A, Olah G, Deitch EA, Szabo C, Papapetropoulos A (2008) Inhibition of angiogenesis by the poly(ADP-ribose) polymerase inhibitor PJ-34. Int J Mol Med 22(1):113–118PubMed
24.
Liu SK, Coackley C, Krause M, Jalali F, Chan N, Bristow RG (2008) A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiother Oncol (journal of the European society for therapeutic radiology and oncology) 88(2):258–268. doi:10.1016/j.radonc.2008.04.005PubMedCrossRef
25.
Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167PubMedCrossRef
26.
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236PubMedCrossRef
27.
Venere M, Hamerlik P, Wu Q, Rasmussen RD, Song LA, Vasanji A, Tenley N, Flavahan WA, Hjelmeland AB, Bartek J, Rich JN (2013) Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ. doi:10.1038/cdd.2013.136
28.
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134. doi:10.1056/NEJMoa0900212PubMedCrossRef
29.
Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49(4):405–413PubMedCentralPubMedCrossRef
30.
Roesner JP, Vagts DA, Iber T, Eipel C, Vollmar B, Noldge-Schomburg GF (2006) Protective effects of PARP inhibition on liver microcirculation and function after haemorrhagic shock and resuscitation in male rats. Intensive Care Med 32(10):1649–1657. doi:10.1007/s00134-006-0335-yPubMedCrossRef
31.
Hamahata A, Enkhbaatar P, Lange M, Yamaki T, Sakurai H, Shimoda K, Nakazawa H, Traber LD, Traber DL (2012) Administration of poly(ADP-ribose) polymerase inhibitor into bronchial artery attenuates pulmonary pathophysiology after smoke inhalation and burn in an ovine model. Burns (journal of the international society for burn injuries) 38(8):1210–1215. doi:10.1016/j.burns.2012.08.021PubMedCrossRef
32.
Tentori L, Leonetti C, Scarsella M, Muzi A, Mazzon E, Vergati M, Forini O, Lapidus R, Xu W, Dorio AS, Zhang J, Cuzzocrea S, Graziani G (2006) Inhibition of poly(ADP-ribose) polymerase prevents irinotecan-induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma. FASEB J (official publication of the federation of American societies for experimental biology) 20(10):1709–1711. doi:10.1096/fj.06-5916fjePubMedCrossRef
33.
Samol J, Ranson M, Scott E, Macpherson E, Carmichael J, Thomas A, Cassidy J (2012) Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs 30(4):1493–1500. doi:10.1007/s10637-011-9682-9PubMedCrossRef
34.
Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S, Maegley KA, Newell DR, Skalitzky D, Wang LZ, Webber SE, Curtin NJ (2007) Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther 6(3):945–956. doi:10.1158/1535-7163.MCT-06-0552PubMedCrossRef
35.
Drew Y, Mulligan EA, Vong WT, Thomas HD, Kahn S, Kyle S, Mukhopadhyay A, Los G, Hostomsky Z, Plummer ER, Edmondson RJ, Curtin NJ (2011) Therapeutic potential of poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst 103(4):334–346. doi:10.1093/jnci/djq509PubMedCrossRef
36.
Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A, Curtin N, Boddy A, McHugh P, Newell D, Harris A, Johnson P, Steinfeldt H, Dewji R, Wang D, Robson L, Calvert H (2008) Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res (an official journal of the American association for cancer research) 14(23):7917–7923. doi:10.1158/1078-0432.CCR-08-1223PubMedCentralPubMedCrossRef
37.
Plummer R, Lorigan P, Steven N, Scott L, Middleton MR, Wilson RH, Mulligan E, Curtin N, Wang D, Dewji R, Abbattista A, Gallo J, Calvert H (2013) A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 71(5):1191–1199. doi:10.1007/s00280-013-2113-1PubMedCrossRef
38.
Murray J, Thomas H, Berry P, Kyle S, Patterson M, Jones C, Los G, Hostomsky Z, Plummer ER, Boddy AV, Curtin NJ (2014) Tumour cell retention of rucaparib, sustained PARP inhibition and efficacy of weekly as well as daily schedules. Br J Cancer. doi:10.1038/bjc.2014.91
39.
Kummar S, Ji J, Morgan R, Lenz HJ, Puhalla SL, Belani CP, Gandara DR, Allen D, Kiesel B, Beumer JH, Newman EM, Rubinstein L, Chen A, Zhang Y, Wang L, Kinders RJ, Parchment RE, Tomaszewski JE, Doroshow JH (2012) A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin Cancer Res (an official journal of the American association for cancer research) 18(6):1726–1734. doi:10.1158/1078-0432.CCR-11-2821PubMedCentralPubMedCrossRef