Skip to main content
Top

20-07-2017 | Pancreatic cancer | Article

Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history

Journal: Genetics in Medicine

Authors: Kari Chaffee, Ann L Oberg, Robert R McWilliams, Neil Majithia, Brian A Allen, John Kidd, Nanda Singh, Anne-Renee Hartman, Richard J Wenstrup, Gloria M Petersen

Authors: Kari G Chaffee, Ann L Oberg, Robert R McWilliams, Neil Majithia, Brian A Allen, John Kidd, Nanda Singh, Anne-Renee Hartman, Richard J Wenstrup, Gloria M Petersen

Publisher: Nature Publishing Group US

Abstract

Purpose

Panel-based genetic testing has identified increasing numbers of patients with pancreatic ductal adenocarcinoma (PDAC) who carry germ-line mutations. However, small sample sizes or number of genes evaluated limit prevalence estimates of these mutations. We estimated prevalence of mutations in PDAC patients with positive family history.

Methods

We sequenced 25 cancer susceptibility genes in lymphocyte DNA from 302 PDAC patients in the Mayo Clinic Biospecimen Resource for Pancreatic Research Registry. Kindreds containing at least two first-degree relatives with PDAC met criteria for familial pancreatic cancer (FPC), while the remaining were familial, but not FPC.

Results

Thirty-six patients (12%) carried at least one deleterious mutation in one of 11 genes. Of FPC patients, 25/185 (14%) were carriers, while 11/117 (9%) non-FPC patients with family history were carriers. Deleterious mutations (n) identified in PDAC patients were BRCA2 (11), ATM (8), CDKN2A (4), CHEK2 (4), MUTYH/MYH (3 heterozygotes, not biallelic), BRCA1 (2), and 1 each in BARD1MSH2NBN, PALB2, and PMS2. Novel mutations were found in ATMBARD1, and PMS2.

Conclusion

Multiple susceptibility gene testing in PDAC patients with family history of pancreatic cancer is warranted regardless of FPC status and will inform genetic risk counseling for families.

Literature
1.
American Cancer Society. . Cancer Facts & Figures 2013. American Cancer Society: Atlanta, 2013.
2.
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM . Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014;74:2913–2921.CrossRefPubMed
3.
Petersen GM . Familial pancreatic adenocarcinoma. Hematol Oncol Clin N Am 2015;29:641–653.CrossRef
4.
Hruban RH, Petersen GM, Ha PK, Kern SE . Genetics of pancreatic cancer: from genes to families. Surg Oncol Clin N Am 1998;7:1–23.CrossRefPubMed
5.
Petersen GM, de Andrade M, Goggins M et al. Pancreatic Cancer Genetic Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev 2006;15:704–710.CrossRefPubMed
6.
Zhen DB, Rabe KG, Gallinger S et al. BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med 2015;17:569–577.CrossRefPubMed
7.
Grant RC, Selander I, Connor AA et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 2015;148:556–564.CrossRefPubMed
8.
Lin KM, Shashidharan M, Thorson AG et al. Cumulative incidence of colorectal and extracolonic cancers in MLH1 and MSH2 mutation carriers of hereditary nonpolyposis colorectal cancer. J Gastrointest Surg 1998;2:67–71.CrossRefPubMed
9.
Kastrinos F, Mukherjee B, Tayob N et al. Risk of pancreatic cancer in families with Lynch syndrome. JAMA 2009;302:1790–1795.CrossRefPubMedPubMedCentral
10.
Klein AP . Genetic susceptibility to pancreatic cancer. Mol Carcinog 2012;51:14–24.CrossRefPubMedPubMedCentral
11.
Jones S, Hruban RH, Kamiyama M et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009;324:217.CrossRefPubMedPubMedCentral
12.
Roberts NJ, Norris AL, Petersen GM et al. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov 2016;6:166–175.CrossRefPubMed
13.
Roberts NJ, Jiao Y, Yu J et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012;2:41–46.CrossRefPubMed
14.
Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW . ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 2015;110:223–262.CrossRefPubMedPubMedCentral
15.
Judkins T, Leclair B, Bowles K et al. Development and analytical validation of a 25-gene next generation sequencing panel that includes the BRCA1 and BRCA2 genes to assess hereditary cancer risk. BMC Cancer 2015;15:215.CrossRefPubMedPubMedCentral
16.
Eggington JM, Bowles KR, Moyes K et al. A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes. Clin Genet 2014;86:229–237.CrossRefPubMed
17.
Richards S, Aziz N, Bale S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–424.CrossRefPubMedPubMedCentral
18.
Holter S, Borgida A, Dodd A et al. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 2015;33:3124–3129.CrossRefPubMed
19.
Hu C, Hart SN, Bamlet WR et al. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev 2016;25:207–211.CrossRefPubMed
20.
Rosenthal ET, Evans B, Kidd J et al. Increased identification of candidates for high-risk breast cancer screening through expanded genetic testing. J Am Coll Radiol 2017;14:561–568.CrossRefPubMed
21.
Daly M, Pilarski R, Berry M et al. Genetic/familial high-risk assessment: breast and ovarian. NCCN Clinical Practice Guidelines in Oncology(version 2.2017). 2016. http://​www.​nccn.​org/​professionals/​physician_​gls/​pdf/​genetics_​screening.​pdf.
22.
Gatti RA, Berkel I, Boder E et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature 1988;336:577–580.CrossRefPubMed
23.
The CBCC-CC. CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet 2004;74:1175–1182.CrossRef
24.
Dong X, Wang L, Taniguchi K et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 2003;72:270–280.CrossRefPubMedPubMedCentral
25.
Cybulski C, Gorski B, Huzarski T et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 2004;75:1131–1135.CrossRefPubMedPubMedCentral
26.
Meijers-Heijboer H, Wijnen J, Vasen H et al. The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet 2003;72:1308–1314.CrossRefPubMedPubMedCentral
27.
Al-Tassan N, Chmiel NH, Maynard J et al. Inherited variants of MYH associated with somatic G:C—>T:A mutations in colorectal tumors. Nat Genet 2002;30:227–232.CrossRefPubMed
28.
Barnetson RA, Devlin L, Miller J et al. Germline mutation prevalence in the base excision repair gene, MYH, in patients with endometrial cancer. Clin Genet 2007;72:551–555.CrossRefPubMed
29.
Nielsen M, Poley JW, Verhoef S et al. Duodenal carcinoma in MUTYH-associated polyposis. J Clin Pathol 2006;59:1212–1215.CrossRefPubMedPubMedCentral
30.
Tung N, Lin NU, Kidd J et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of breast cancer patients. J Clin Oncol 2016;34:1460–1468.CrossRefPubMedPubMedCentral
31.
Yurgelun MB, Allen B, Kaldate RR et al. Identification of a variety of mutations in cancer predisposition genes in patients with suspected Lynch syndrome. Gastroenterology 2015;149:604–613.CrossRefPubMed
32.
Provenzale D, Gupta S, Ahnen DJ et al. Genetic/familial high-risk assessment: colorectal version 1.2016. Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2016;14:1010–1030.CrossRefPubMed
33.
Vasen HF, Stormorken A, Menko FH et al. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families. J Clin Oncol 2001;19:4074–4080.CrossRefPubMed
34.
Yang XR, Rotunno M, Xiao Y et al. Multiple rare variants in high-risk pancreatic cancer-related genes may increase risk for pancreatic cancer in a subset of patients with and without germline CDKN2A mutations. Hum Genet 2016;135:1241–1249.CrossRefPubMedPubMedCentral
35.
Lynch HT, Voorhees GJ, Lanspa SJ, McGreevy PS, Lynch JF . Pancreatic carcinoma and hereditary nonpolyposis colorectal cancer: a family study. Br J Cancer 1985;52:271–273.CrossRefPubMedPubMedCentral
36.
Smith AL, Alirezaie N, Connor A et al. Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer. Cancer Lett 2016;370:302–312.CrossRefPubMed
37.
Seemanova E, Jarolim P, Seeman P et al. Cancer risk of heterozygotes with the NBN founder mutation. J Natl Cancer Inst 2007;99:1875–1880.CrossRefPubMed
38.
Zhang B, Beeghly-Fadiel A, Long J, Zheng W . Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol 2011;12:477–488.CrossRefPubMedPubMedCentral