Skip to main content
Top

06-01-2016 | Pancreatic cancer | Article

Metformin and pancreatic cancer: Is there a role?

Journal: Cancer Chemotherapy and Pharmacology

Authors: Andre De Souza, Khadija Irfan Khawaja, Faisal Masud, Muhammad Wasif Saif

Publisher: Springer Berlin Heidelberg

Abstract

Pancreatic cancer is the fourth leading cause of cancer-related deaths in the USA, with a 5-year survival rate of 6 %. Anti-hyperglycemic treatments for type 2 diabetes mellitus that induce hyperinsulinemia (i.e., sulfonylureas) are thought to increase cancer risk, whereas treatments that lower insulin resistance and hyperinsulinemia (i.e., metformin) are considered cancer prevention strategies. Metformin is a cornerstone in the treatment of diabetes mellitus type 2. Retrospective studies have shown a survival benefit in diabetic patients with many solid tumors including pancreatic cancer that have been treated with metformin compared with patients treated with insulin or sulfonylureas. Metformin influences various cellular pathways, including activation of the LKB1/AMPK pathway, inhibition of cell division, promotion of apoptosis and autophagy, down-regulation of circulating insulin, and activation of the immune system. Ongoing research is redefining our understanding about how metformin modulates the molecular pathways implicated in pancreatic cancer. The authors review the topic critically and also give their opinion. Further studies investigating the effect of metformin in combination with chemotherapy, targeted agents, or radiation therapy are undergoing. In addition, the role of metabolic and other biomarkers is needed.
Literature
1.
Pannala R, Basu A, Petersen GM, Chari ST (2009) New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol 10(1):88–95PubMedCentralCrossRefPubMed
2.
Bartosch-Harlid A, Andersson R (2010) Diabetes mellitus in pancreatic cancer and the need for diagnosis of asymptomatic disease. Pancreatology 10(4):423–428CrossRefPubMed
3.
Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29:254–258CrossRefPubMed
4.
Watanabe CK (1918) Studies in the metabolic changes induced by administration of guanidine bases influence of injected guanidine hydrochloride upon blood sugar content. J Biol Chem 33:253–265
5.
UKPDS Group (1998) Effects of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet 352:854–865CrossRef
6.
El-Mir M-Y et al (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228CrossRefPubMed
7.
Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614PubMedCentralCrossRefPubMed
8.
Zhou G et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMedCentralCrossRefPubMed
9.
Zhou M, Xia L, Wang J (2007) Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 35(10):1956–1962PubMedCentralCrossRefPubMed
10.
Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE (2012) Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 22(11):820–827PubMedCentralCrossRefPubMed
11.
Muller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M (2005) Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 70:1851–1860CrossRefPubMed
12.
Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, Ding L, Zhang J, Wen A (2013) Pharmacogenetic variation and metformin response. Curr Drug Metab 14(10):1070–1082CrossRefPubMed
13.
Zhou K, Donnelly L, Yang J, Li M, Deshmukh H, Van Zuydam N, Ahlqvist E, Wellcome Trust Case Control Consortium, Spencer CC, Groop L, Morris AD, Colhoun HM, Sham PC, McCarthy MI, Palmer CN, Pearson ER (2014) Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2(6):481–487. doi:10.​1016/​S2213-8587(14)70050-6 PubMedCentralCrossRefPubMed
14.
Minematsu T, Giacomini KM (2011) Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther 10:531–539PubMedCentralCrossRefPubMed
15.
Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE (1995) Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 333(9):550–554CrossRefPubMed
16.
Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614PubMedCentralCrossRefPubMed
17.
Hinke SA, Martens GA, Cai Y, Finsi J, Heimberg H, Pipeleers D, Van de Casteele M (2007) Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol 150(8):1031–1043PubMedCentralCrossRefPubMed
18.
Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928CrossRefPubMed
19.
Frasca F, Pandini G, Sciacca L et al (2008) The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 114:23–37CrossRefPubMed
20.
Mountjoy KG, Finlay GJ, Holdaway IM (1987) Abnormal insulin receptor down regulation and dissociation of down regulation from insulin biological action in cultured human tumor cells. Cancer Res 47:6500–6504PubMed
21.
De Meyts P (2004) Insulin and its receptor: structure, function and evolution. Bioessays 26:1351–1362CrossRefPubMed
22.
Leung KC, Doyle N, Ballesteros M, Waters MJ, Ho KK (2000) Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. J Clin Endocrinol Metab 85:4712–4720PubMed
23.
Housa D, Housova J, Vernerova Z, Haluzik M (2006) Adipocytokines and cancer. Physiol Res 55:233–244PubMed
24.
O’Sullivan KE, Reynolds JV, O’Hanlon C, O’Sullivan JN, Lysaght J (2014) Could signal transducer and activator of transcription 3 be a therapeutic target in obesity-related gastrointestinal malignancy? J Gastrointest Cancer 45(1):1–11CrossRefPubMed
25.
Krechler T, Zeman M, Vecka M, Macasek J, Jachymova M, Zima T, Zak A (2011) Leptin and adiponectin in pancreatic cancer: connection with diabetes mellitus. Neoplasma 58(1):58–64CrossRefPubMed
26.
Dalamaga M et al (2009) Pancreatic cancer expresses adiponectin receptors and is associated with hypoleptinemia and hyperadiponectinemia: a case–control study. Cancer Causes Control 20(5):625–633PubMedCentralCrossRefPubMed
27.
Bao B, Wang Z, Li Y, Kong D, Ali S, Banerjee S, Ahmad A, Sarkar FH (2011) The complexities of obesity and diabetes with the development and progression of pancreatic cancer. Biochim Biophys Acta 1815(2):135–146PubMedCentralPubMed
28.
Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617PubMedCentralCrossRefPubMed
29.
Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libutti SK, Nakakura EK, Golub TR, Hanahan D (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23:2152–2165PubMedCentralCrossRefPubMed
30.
Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z, Guan Q, Gao L, Zhao J, Zhao L (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48(1):61–69CrossRefPubMed
31.
Kolfschoten IG, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 11(Suppl. 4):118–129CrossRefPubMed
32.
Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736PubMedCentralCrossRefPubMed
33.
Kent OA, Mullendore M, Wentzel EA, Lopez-Romero P, Tan AC, Alvarez H, West K, Ochs MF, Hidalgo M, Arking DE, Maitra A, Mendell JT (2009) A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther 8:2013–2024PubMedCentralCrossRefPubMed
34.
Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12CrossRefPubMed
35.
Rachagani S, Kumar S, Batra SK (2010) MicroRNA in pancreatic cancer: pathological, diagnostic and therapeutic implications. Cancer Lett 292:8–16PubMedCentralCrossRefPubMed
36.
Hardie DG (2007) AMP-activated/SNF1protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785CrossRefPubMed
37.
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646PubMedCentralCrossRefPubMed
38.
Yue W, Yang CS, Dipaola RS, Tan XL (2014) Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev Res (Phila) 7(4):388–397CrossRef
39.
Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E (2009) Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 69(16):6539–6545PubMedCentralCrossRefPubMed
40.
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67:10804–10812CrossRefPubMed
41.
Gotlieb WH, Saumet J, Beauchamp MC, Gu J, Lau S, Pollak MN, Bruchim I (2008) In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol 110:246–250CrossRefPubMed
42.
Zhang Y, Yang J, Cui X, Chen Y et al (2013) A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth. EMBO Mol Med 5(9):1322–1334PubMedCentralCrossRefPubMed
43.
Li W, Yuan Y, Huang L, Qiao M, Zhang Y (2012) Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells. Diabetes Res Clin Pract 96(2):187–195CrossRefPubMed
44.
Kalender A, Selvaraj A, Kim SY et al (2010) Metformin, independent of AMPK, inhibits mTORC1 in rag GTPase-dependent manner. Cell Metab 11:390–401PubMedCentralCrossRefPubMed
45.
Nakamura M, Ogo A, Yamura M, Yamaguchi Y, Nakashima H (2014) Metformin suppresses sonic hedgehog expression in pancreatic cancer cells. Anticancer Res 34(4):1765–1769PubMed
46.
Morran DC, Wu J, Jamieson NB, Mrowinska A, Kalna G, Karim SA, Au AY, Scarlett CJ, Chang DK, Pajak MZ, Australian Pancreatic Cancer Genome Initiative (APGI), Oien KA, McKay CJ, Carter CR, Gillen G, Champion S, Pimlott SL, Anderson KI, Evans TR, Grimmond SM, Biankin AV, Sansom OJ, Morton JP (2014) Targeting mTOR dependency in pancreatic cancer. Gut 63(9):1481–1489PubMedCentralCrossRefPubMed
47.
Liang J, Shao SH, Xu ZX et al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224CrossRefPubMed
48.
Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares AH, Smulson ME (1998) Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem 273(22):13703–13712CrossRefPubMed
49.
Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis: caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274(33):22932–22940CrossRefPubMed
50.
Fasih A, Elbaz HA, Hüttemann M, Konski AA, Zielske SP (2014) Radiosensitization of pancreatic cancer cells by metformin through the AMPK pathway. Radiat Res 182(1):50–59PubMedCentralCrossRefPubMed
51.
Zhang JG, Hong DF, Zhang CW, Sun XD, Wang ZF, Shi Y, Liu JW, Shen GL, Zhang YB, Cheng J, Wang CY, Zhao G (2014) Sirtuin 1 facilitates chemoresistance of pancreatic cancer cells by regulating adaptive response to chemotherapy-induced stress. Cancer Sci 105(4):445–454PubMedCentralCrossRefPubMed
52.
Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, Steele VE, Rao CV (2013) Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol 6(6):649–659PubMedCentralCrossRefPubMed
53.
Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoll Y, Trabulo SM, Dorado J, Balic A, Hidalgo M, Heeschen C (2013) Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS One 8(10):e76518PubMedCentralCrossRefPubMed
54.
Semple RK (2009) From bending DNA to diabetes: the curious case of HMGA1. J Biol 8(7):64PubMedCentralCrossRefPubMed
55.
Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137(2):482–488PubMedCentralCrossRefPubMed
56.
Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32:1620–1625PubMedCentralCrossRefPubMed
57.
Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D (2012) Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res 18(10):2905–2912PubMedCentralCrossRefPubMed
58.
Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S (2010) Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila) 3(11):1451–1461CrossRef
59.
Hwang AL, Haynes K, Hwang WT, Yang YX (2013) Metformin and survival in pancreatic cancer: a retrospective cohort study. Pancreas 42(7):1054–1059PubMedCentralCrossRefPubMed
60.
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305PubMedCentralCrossRefPubMed
61.
Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC (2011) Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer 11:20PubMedCentralCrossRefPubMed
62.
Bodmer M, Becker C, Meier C, Jick SS, Meier CR (2012) Use of antidiabetic agents and the risk of pancreatic cancer: a case–control analysis. Am J Gastroenterol 107(4):620–626CrossRefPubMed
63.
Zhang P, Li H, Tan X, Chen L, Wang S (2013) Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol 37(3):207–218CrossRefPubMed
64.
Wang Z, Lai ST, Xie L, Zhao JD, Ma NY, Zhu J, Ren ZG, Jiang GL (2014) Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 106(1):19–26CrossRefPubMed
65.
Stolzenberg-Solomon RZ, Graubard BI, Chari S, Limburg P, Taylor PR, Virtamo J, Albanes D (2005) Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294(22):2872–2878CrossRefPubMed
66.
Singh S, Singh PP, Singh AG, Murad MH, McWilliams RR, Chari ST (2013) Anti-diabetic medications and risk of pancreatic cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Am J Gastroenterol 108(4):510–519; quiz 520
67.
Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G (2012) Corrao G Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 17(6):813–822PubMedCentralCrossRefPubMed
68.
Pollak M (2012) Metformin and pancreatic cancer: a clue requiring investigation. Clin Cancer Res 18(10):2723–2725CrossRefPubMed
69.
Motoo Y, Shimasaki T, Ishigaki Y, Nakajima H, Kawakami K, Minamoto T (2011) Metabolic disorder, inflammation, and deregulated molecular pathways converging in pancreatic cancer development: implications for new therapeutic strategies. Cancers 3(1):446–460. doi:10.​3390/​cancers3010446 PubMedCentralCrossRefPubMed