Skip to main content
Top

25-11-2016 | Ovarian cancer | Article

The disparate origins of ovarian cancers: pathogenesis and prevention strategies

Authors: Anthony N. Karnezis, Kathleen R. Cho, C. Blake Gilks, Celeste Leigh Pearce, David G. Huntsman

Abstract

Ovarian cancer is the fifth cause of cancer-related death in women and comprises a histologically and genetically broad range of tumours, including those of epithelial, sex cord-stromal and germ cell origin. Recent evidence indicates that high-grade serous ovarian carcinoma, clear cell carcinoma and endometrioid carcinoma primarily arise from tissues that are not normally present in the ovary. These histogenetic pathways are informing risk-reduction strategies for the prevention of ovarian and ovary-associated cancers and have highlighted the importance of the seemingly unique ovarian microenvironment.

Nat Rev Cancer 2017; 17: 65–74. doi:10.1038/nrc.2016.113

Subject terms: Cancer genetics • Cancer stem cells • Endometrial cancer • Germ cell tumours • Gynaecological cancer • Ovarian cancer

Historically, one of the main reasons why the biology and evolution of common ovarian cancers have been so difficult to understand is because most tumour cells do not phenotypically resemble any normal cells in the ovary. For high-grade serous carcinoma (HGSC), the most common ovarian cancer, no credible histological precursor lesion had been identified until 15 years ago, and the majority of mucinous carcinomas of the ovary are metastases from other organs1. For other ovarian tumours, for which a precursor lesion has been identified, such as endometriosis for clear cell carcinoma (CCC) and endometrioid carcinoma (EC), it is still not known how the precursor develops2. These and other issues have substantially hampered our understanding of the origin of ovarian cancers and their pathogenesis, and thereby limited our ability to study them in experimental systems. Furthermore, the realization that the most common ovarian cancer types arise from cells that are not normally located in the ovary challenges the concept of what a 'true' ovarian cancer is.

Literature
  1. Young, R. H. From Krukenberg to today: the ever present problems posed by metastatic tumors in the ovary: part I. Historical perspective, general principles, mucinous tumors including the Krukenberg tumor. Adv. Anat. Pathol. 13, 205–227 (2006). ISI PubMed Article
  2. van der Linden, P. J. Theories on the pathogenesis of endometriosis. Hum. Reprod. 11 (Suppl. 3), 53–65 (1996).
  3. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). CAS ISI PubMed Article
  4. Cools, M., Wolffenbuttel, K. P., Drop, S. L., Oosterhuis, J. W. & Looijenga, L. H. Gonadal development and tumor formation at the crossroads of male and female sex determination. Sex. Dev. 5, 167–180 (2011). CAS ISI PubMed Article
  5. Brennan, J. & Capel, B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat. Rev. Genet. 5, 509–521 (2004). CAS ISI PubMed Article
  6. Richards, J. S. & Pangas, S. A. The ovary: basic biology and clinical implications. J. Clin. Invest. 120, 963–972 (2010). CAS PubMed Article
  7. Al-Agha, O. M. et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am. J. Surg. Pathol. 35, 484–494 (2011). PubMed Article
  8. Costa, M. J., Ames, P. F., Walls, J. & Roth, L. M. Inhibin immunohistochemistry applied to ovarian neoplasms: a novel, effective, diagnostic tool. Hum. Pathol. 28, 1247–1254 (1997). CAS ISI PubMed Article
  9. Movahedi-Lankarani, S. & Kurman, R. J. Calretinin, a more sensitive but less specific marker than α-inhibin for ovarian sex cord-stromal neoplasms: an immunohistochemical study of 215 cases. Am. J. Surg. Pathol. 26, 1477–1483 (2002). ISI PubMed Article
  10. Zhao, C. et al. Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am. J. Surg. Pathol. 33, 354–366 (2009). PubMed Article
  11. Fleming, N. I. et al. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS ONE 5, e14389 (2010). CAS PubMed Article
  12. Rosario, R., Araki, H., Print, C. G. & Shelling, A. N. The transcriptional targets of mutant FOXL2 in granulosa cell tumours. PLoS ONE 7, e46270 (2012). CAS PubMed Article
  13. Hes, O. et al. Mutational analysis (c.402C>G) of the FOXL2 gene and immunohistochemical expression of the FOXL2 protein in testicular adult type granulosa cell tumors and incompletely differentiated sex cord stromal tumors. Appl. Immunohistochem. Mol. Morphol.19, 347–351 (2011). CAS Article
  14. Lima, J. F. et alFOXL2 mutations in granulosa cell tumors occurring in males. Arch. Pathol. Lab. Med. 136, 825–828 (2012). CAS Article
  15. Lee, I. H. et al. Clinicopathologic characteristics of granulosa cell tumors of the ovary: a multicenter retrospective study. J. Gynecol. Oncol. 22, 188–195 (2011). Article
  16. Jamieson, S. et al. The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod. Pathol. 23, 1477–1485 (2010). CAS ISI PubMed Article
  17. Schrader, K. A. et al. The specificity of the FOXL2 c.402C>G somatic mutation: a survey of solid tumors. PLoS ONE 4, e7988 (2009). CAS PubMed Article
  18. Shah, S. P. et al. Mutation of FOXL2 in granulosa- cell tumors of the ovary. N. Engl. J. Med.360, 2719–2729 (2009). CAS ISI PubMed Article
  19. Boyd, N., Dancey, J. E., Gilks, C. B. & Huntsman, D. G. Rare cancers: a sea of opportunity. Lancet Oncol. 17, e52–e61 (2016). PubMed Article
  20. Bellessort, B. et al. Role of Foxl2 in uterine maturation and function. Hum. Mol. Genet. 24, 3092–3103 (2015). CAS Article
  21. Benayoun, B. A. et al. Functional exploration of the adult ovarian granulosa cell tumor-associated somatic FOXL2 mutation p.Cys134Trp (c.402C>G). PLoS ONE 5, e8789 (2010). CAS PubMed Article
  22. Kim, J. H. et al. Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene 30, 1653–1663 (2011). CAS ISI PubMed Article
  23. Edson, M. A. et al. Granulosa cell-expressed BMPR1A and BMPR1B have unique functions in regulating fertility but act redundantly to suppress ovarian tumor development. Mol. Endocrinol. 24, 1251–1266 (2010). CAS ISI PubMed Article
  24. Pangas, S. A. et al. Conditional deletion of Smad1 and Smad5 in somatic cells of male and female gonads leads to metastatic tumor development in mice. Mol. Cell. Biol. 28, 248–257 (2008). CAS ISI PubMed Article
  25. Myers, M., Mansouri-Attia, N., James, R., Peng, J. & Pangas, S. A. GDF9 modulates the reproductive and tumor phenotype of female Inha-null mice. Biol. Reprod. 88, 86 (2013). CAS Article
  26. Schmidt, D. et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131, 933–942 (2004). CAS ISI PubMed Article
  27. Crisponi, L. et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet. 27, 159–166 (2001). CAS ISI PubMed Article
  28. Uda, M. et alFoxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet. 13, 1171–1181 (2004). CAS ISI PubMed Article
  29. Uhlenhaut, N. H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009). CAS ISI PubMed Article
  30. Kalfa, N. et al. Aberrant expression of ovary determining gene FOXL2 in the testis and juvenile granulosa cell tumor in children. J. Urol. 180, 1810–1813 (2008). Article
  31. Heravi-Moussavi, A. et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N. Engl. J. Med. 366, 234–242 (2012). CAS ISI PubMed Article
  32. Anglesio, M. S. et al. Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J. Pathol. 229, 400–409 (2013). CAS ISI PubMed Article
  33. Wang, Y. et al. The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors. Neoplasia 17, 650–660 (2015). CAS Article
  34. Barrionuevo, F. et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol. Reprod. 74, 195–201 (2006). CAS ISI PubMed Article
  35. Conlon, N. et al. A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod. Pathol. 28, 1603–1612 (2015). CAS Article
  36. de Boer, C. M. et al. DICER1 RNase IIIb domain mutations are infrequent in testicular germ cell tumours. BMC Res. Notes 5, 569 (2012). CAS PubMed Article
  37. Dickersin, G. R., Kline, I. W. & Scully, R. E. Small cell carcinoma of the ovary with hypercalcemia: a report of eleven cases. Cancer 49, 188–197 (1982). CAS ISI PubMed Article
  38. Young, R. H., Oliva, E. & Scully, R. E. Small cell carcinoma of the ovary, hypercalcemic type. A clinicopathological analysis of 150 cases. Am. J. Surg. Pathol. 18, 1102–1116 (1994). CAS ISI PubMed Article
  39. Scully, R. E. Tumors of the Ovary and Maldeveloped Gonads (Armed Forces Institute of Pathology, 1979).
  40. Jelinic, P. et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat. Genet. 46, 424–426 (2014). CAS PubMed Article
  41. Kupryjan´czyk, J. et al. Ovarian small cell carcinoma of hypercalcemic type — evidence of germline origin and SMARCA4 gene inactivation. a pilot study. Pol. J. Pathol. 64, 238–246 (2013). ISI PubMed Article
  42. Ramos, P. et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4Nat. Genet. 46, 427–429 (2014). CAS PubMed Article
  43. Witkowski, L. et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet. 46, 438–443 (2014). CAS PubMed Article
  44. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998). CAS ISI PubMed Article
  45. Foulkes, W. D. et al. No small surprise — small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour. J. Pathol. 233, 209–214 (2014). CAS PubMed Article
  46. Agaimy, A., Thiel, F., Hartmann, A. & Fukunaga, M. SMARCA4-deficient undifferentiated carcinoma of the ovary (small cell carcinoma, hypercalcemic type): clinicopathologic and immunohistochemical study of 3 cases. Ann. Diagn. Pathol. 19, 283–287 (2015). Article
  47. Jelinic, P. et al. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type. Mod. Pathol. 29, 60–66 (2016). CAS Article
  48. Karnezis, A. N. et al. Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type. J. Pathol. 238, 389–400 (2016). CAS PubMed Article
  49. Oike, T. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013). CAS ISI PubMed Article
  50. Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014). CAS PubMed Article
  51. Glaros, S. et al. The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene 26, 7058–7066 (2007). CAS ISI PubMed Article
  52. Kahali, B. et al. The silencing of the SWI/SNF subunit and anticancer gene BRM in Rhabdoid tumors. Oncotarget 5, 3316–3332 (2014). PubMed Article
  53. Yamamichi, N. et al. The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene 24, 5471–5481 (2005). CAS ISI PubMed Article
  54. Florell, S. R., Bruggers, C. S., Matlak, M., Young, R. H. & Lowichik, A. Ovarian small cell carcinoma of the hypercalcemic type in a 14 month old: the youngest reported case. Med. Pediatr. Oncol. 32, 304–307 (1999). CAS PubMed Article
  55. Berchuck, A., Witkowski, L., Hasselblatt, M. & Foulkes, W. D. Prophylactic oophorectomy for hereditary small cell carcinoma of the ovary, hypercalcemic type. Gynecol. Oncol. Rep. 12, 20–22 (2015). Article
  56. Pageaux, J. F., Laugier, C., Pal, D. & Pacheco, H. Development of the oviduct in quail during sexual maturation in relation to plasma concentrations of oestradiol and progesterone. J. Endocrinol. 100, 167–173 (1984). CAS Article
  57. Steinhauer, N., Boos, A. & Gunzel-Apel, A. R. Morphological changes and proliferative activity in the oviductal epithelium during hormonally defined stages of the oestrous cycle in the bitch. Reprod. Domest. Anim. 39, 110–119 (2004). CAS Article
  58. Verhage, H. G., Abel, J. H. Jr, Tietz, W. J. Jr & Barrau, M. D. Development and maintenance of the oviductal epithelium during the estrous cycle in the bitch. Biol. Reprod. 9, 460–474 (1973). CAS
  59. West, N. B. & Brenner, R. M. Estrogen receptor levels in the oviducts and endometria of cynomolgus macaques during the menstrual cycle. Biol. Reprod. 29, 1303–1312 (1983). CAS PubMed Article
  60. Donnez, J., Casanas-Roux, F., Caprasse, J., Ferin, J. & Thomas, K. Cyclic changes in ciliation, cell height, and mitotic activity in human tubal epithelium during reproductive life. Fertil. Steril. 43, 554–559 (1985). CAS ISI PubMed Article
  61. Pearce, C. L. et al. Population distribution of lifetime risk of ovarian cancer in the United States. Cancer Epidemiol. Biomarkers Prev. 24, 671–676 (2015). PubMed Article
  62. McAlpine, J. N. et al. Opportunistic salpingectomy: uptake, risks, and complications of a regional initiative for ovarian cancer prevention. Am. J. Obstet. Gynecol. 210, 471.e1–471.e11 (2014). Article
  63. Eskenazi, B. & Warner, M. L. Epidemiology of endometriosis. Obstet. Gynecol. Clin. North. Am. 24, 235–258 (1997). CAS PubMed Article
  64. Pearce, C. L. et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case–control studies. Lancet Oncol. 13, 385–394 (2012). ISI PubMed Article
  65. King, C. M., Barbara, C., Prentice, A., Brenton, J. D. & Charnock-Jones, D. S. Models of endometriosis and their utility in studying progression to ovarian clear cell carcinoma. J. Pathol. 238, 185–196 (2016). Article
  66. Anglesio, M. S. et al. Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J. Pathol. 236, 201–209 (2015). CAS Article
  67. Wiegand, K. C. et alARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010). CAS ISI PubMed Article
  68. Jones, A. et al. Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development. PLoS Med. 10, e1001551 (2013). CAS PubMed Article
  69. Somigliana, E. et al. Association between endometriosis and cancer: a comprehensive review and a critical analysis of clinical and epidemiological evidence. Gynecol. Oncol. 101, 331–341 (2006). ISI PubMed Article
  70. Moll, U. M., Chumas, J. C., Chalas, E. & Mann, W. J. Ovarian carcinoma arising in atypical endometriosis. Obstet. Gynecol. 75, 537–539 (1990). CAS
  71. LaGrenade, A. & Silverberg, S. G. Ovarian tumors associated with atypical endometriosis. Hum. Pathol. 19, 1080–1084 (1988). CAS ISI PubMed Article
  72. Ogawa, S. et al. Ovarian endometriosis associated with ovarian carcinoma: a clinicopathological and immunohistochemical study. Gynecol. Oncol. 77, 298–304 (2000). CAS PubMed Article
  73. Fukunaga, M., Nomura, K., Ishikawa, E. & Ushigome, S. Ovarian atypical endometriosis: its close association with malignant epithelial tumours. Histopathology 30, 249–255 (1997). CAS ISI PubMed Article
  74. Prefumo, F., Todeschini, F., Fulcheri, E. & Venturini, P. L. Epithelial abnormalities in cystic ovarian endometriosis. Gynecol. Oncol. 84, 280–284 (2002). Article
  75. Jiang, X., Morland, S. J., Hitchcock, A., Thomas, E. J. & Campbell, I. G. Allelotyping of endometriosis with adjacent ovarian carcinoma reveals evidence of a common lineage. Cancer Res. 58, 1707–1712 (1998). CAS ISI PubMed
  76. Prowse, A. H. et al. Molecular genetic evidence that endometriosis is a precursor of ovarian cancer. Int. J. Cancer 119, 556–562 (2006). CAS ISI PubMed Article
  77. Sato, N. et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 60, 7052–7056 (2000). CAS ISI PubMed
  78. Anglesio, M. S. et al. Synchronous endometrial and ovarian carcinomas: evidence of clonality. J. Natl Cancer Inst. 108, djv428 (2016). Article
  79. Sieh, W. et al. Tubal ligation and risk of ovarian cancer subtypes: a pooled analysis of case–control studies. Int. J. Epidemiol. 42, 579–589 (2013). ISI PubMed Article
  80. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010). CAS ISI PubMed Article
  81. Buell-Gutbrod, R., Cavallo, A., Lee, N., Montag, A. & Gwin, K. Heart and neural crest derivatives expressed transcript 2 (HAND2): a novel biomarker for the identification of atypical hyperplasia and Type I endometrial carcinoma. Int. J. Gynecol. Pathol. 34, 65–73 (2015). CAS Article
  82. Herington, J. L., Bruner-Tran, K. L., Lucas, J. A. & Osteen, K. G. Immune interactions in endometriosis. Expert Rev. Clin. Immunol. 7, 611–626 (2011).PubMed Article
  83. Sanchez, A. M. et al. The distinguishing cellular and molecular features of the endometriotic ovarian cyst: from pathophysiology to the potential endometrioma-mediated damage to the ovary. Hum. Reprod. Update 20, 217–230 (2014). CAS Article
  84. Vercellini, P. et al. Post-operative endometriosis recurrence: a plea for prevention based on pathogenetic, epidemiological and clinical evidence. Reprod. Biomed. Online 21, 259–265 (2010). PubMed Article
  85. Crum, C. P., McKeon, F. D. & Xian, W. BRCA, the oviduct, and the space and time continuum of pelvic serous carcinogenesis. Int. J. Gynecol. Cancer 22, S29–S34 (2012). PubMed Article
  86. Dubeau, L. & Drapkin, R. Coming into focus: the nonovarian origins of ovarian cancer. Ann. Oncol. 24, viii28–viii35 (2013). PubMed Article
  87. Kurman, R. J. & Shih, l.-M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer — shifting the paradigm. Hum. Pathol. 42, 918–931 (2011). CAS ISI PubMed Article
  88. Fathalla, M. F. Incessant ovulation — a factor in ovarian neoplasia? Lancet 2, 163 (1971). CAS ISI PubMed Article
  89. Laviolette, L. A. et al. 17β-estradiol accelerates tumor onset and decreases survival in a transgenic mouse model of ovarian cancer. Endocrinology 151, 929–938 (2010). CAS PubMed Article
  90. Ong, A., Maines-Bandiera, S. L., Roskelley, C. D. & Auersperg, N. An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium. Int. J. Cancer 85, 430–437 (2000). CAS ISI PubMed Article
  91. Sherman-Baust, C. A. et al. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development. J. Pathol. 233, 228–237 (2014). CAS PubMed Article
  92. Miyoshi, I. et al. Mouse transgenic for murine oviduct-specific glycoprotein promoter-driven simian virus 40 large T-antigen: tumor formation and its hormonal regulation. Mol. Reprod. Dev. 63, 168–176 (2002). CAS Article
  93. Pothuri, B. et al. Genetic analysis of the early natural history of epithelial ovarian carcinoma. PLoS ONE 5, e10358 (2010). CAS PubMed Article
  94. Dubeau, L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol. Oncol. 72, 437–442 (1999). CAS ISI PubMed Article
  95. Colgan, T. J., Murphy, J., Cole, D. E., Narod, S. & Rosen, B. Occult carcinoma in prophylactic oophorectomy specimens: prevalence and association with BRCA germline mutation status. Am. J. Surg. Pathol. 25, 1283–1289 (2001). CAS ISI PubMed Article
  96. Leeper, K. et al. Pathologic findings in prophylactic oophorectomy specimens in high-risk women. Gynecol. Oncol. 87, 52–56 (2002). ISI PubMed Article
  97. Paley, P. J. et al. Occult cancer of the fallopian tube in BRCA-1 germline mutation carriers at prophylactic oophorectomy: a case for recommending hysterectomy at surgical prophylaxis. Gynecol. Oncol. 80, 176–180 (2001). CAS ISI PubMed Article
  98. Zweemer, R. P. et al. Molecular evidence linking primary cancer of the fallopian tube to BRCA1 germline mutations. Gynecol. Oncol. 76, 45–50 (2000). CAS ISI PubMed Article
  99. Piek, J. M. et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J. Pathol. 195, 451–456 (2001). CAS ISI PubMed Article
  100. Cass, I. et al. BRCA-mutation-associated fallopian tube carcinoma: a distinct clinical phenotype? Obstet. Gynecol. 106, 1327–1334 (2005). CAS PubMed Article
  101. Medeiros, F. et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am. J. Surg. Pathol. 30, 230–236 (2006). ISI PubMed Article
  102. Mehra, K. et al. STICS, SCOUTs and p53 signatures; a new language for pelvic serous carcinogenesis. Front. Biosci. (Elite Ed.) 3, 625–634 (2011). PubMed Article
  103. Tone, A. A. et al. The role of the fallopian tube in ovarian cancer. Clin. Adv. Hematol. Oncol.10, 296–306 (2012).
  104. Singh, N., Gilks, C. B., Wilkinson, N. & McCluggage, W. G. Assessment of a new system for primary site assignment in high-grade serous carcinoma of the fallopian tube, ovary, and peritoneum. Histopathology 67, 331–337 (2015). PubMed Article
  105. Gilks, C. B. et al. Incidental nonuterine high-grade serous carcinomas arise in the fallopian tube in most cases: further evidence for the tubal origin of high-grade serous carcinomas. Am. J. Surg. Pathol. 39, 357–364 (2015). PubMed Article
  106. Morrison, J. C., Blanco, L. Z. Jr, Vang, R. & Ronnett, B. M. Incidental serous tubal intraepithelial carcinoma and early invasive serous carcinoma in the nonprophylactic setting: analysis of a case series. Am. J. Surg. Pathol. 39, 442–453 (2015). PubMed Article
  107. Roh, M. H., Kindelberger, D. & Crum, C. P. Serous tubal intraepithelial carcinoma and the dominant ovarian mass: clues to serous tumor origin? Am. J. Surg. Pathol. 33, 376–383 (2009). PubMed Article
  108. Banet, N. & Kurman, R. J. Two types of ovarian cortical inclusion cysts: proposed origin and possible role in ovarian serous carcinogenesis. Int. J. Gynecol. Pathol. 34, 3–8 (2015). CAS Article
  109. Bowen, N. J. et al. Emerging roles for PAX8 in ovarian cancer and endosalpingeal development. Gynecol. Oncol. 104, 331–337 (2007). CAS ISI PubMed Article
  110. Laury, A. R. et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am. J. Surg. Pathol. 35, 816–826 (2011). ISI PubMed Article
  111. Ordonez, N. G. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv. Anat. Pathol. 19, 140–151 (2012). CAS ISI PubMed Article
  112. Ozcan, A. et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod. Pathol. 24, 751–764 (2011). CAS ISI PubMed Article
  113. Marquez, R. T. et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin. Cancer Res. 11, 6116–6126 (2005). CAS ISI PubMed Article
  114. Levanon, K. et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 29, 1103–1113 (2010). CAS ISI PubMed Article
  115. Lee, Y. et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 211, 26–35 (2007). CAS ISI PubMed Article
  116. Jarboe, E. et al. Serous carcinogenesis in the fallopian tube: a descriptive classification. Int. J. Gynecol. Pathol. 27, 1–9 (2008). ISI PubMed Article
  117. Yemelyanova, A. et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod. Pathol. 24, 1248–1253 (2011). CAS ISI PubMed Article
  118. Gross, A. L., Kurman, R. J., Vang, R., Shih, l.-M. & Visvanathan, K. Precursor lesions of high-grade serous ovarian carcinoma: morphological and molecular characteristics. J. Oncol.2010, 126295 (2010). PubMed Article
  119. Kindelberger, D. W. et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am. J. Surg. Pathol. 31, 161–169 (2007). ISI PubMed Article
  120. Leonhardt, K., Einenkel, J., Sohr, S., Engeland, K. & Horn, L. C. p53 signature and serous tubal in-situ carcinoma in cases of primary tubal and peritoneal carcinomas and serous borderline tumors of the ovary. Int. J. Gynecol. Pathol. 30, 417–424 (2011). PubMed Article
  121. Yamamoto, Y. et alIn vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells. J. Pathol. 238, 519–530 (2016). CAS Article
  122. Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24, 751–765 (2013). CAS ISI PubMed Article
  123. Prentice, L., Stewart, A., Mohiuddin, S. & Johnson, N. P. What is endosalpingiosis? Fertil. Steril. 98, 942–947 (2012). Article
  124. Auersperg, N. The stem-cell profile of ovarian surface epithelium is reproduced in the oviductal fimbriae, with increased stem-cell marker density in distal parts of the fimbriae. Int. J. Gynecol. Pathol. 32, 444–453 (2013). CAS ISI PubMed Article
  125. Auersperg, N. The origin of ovarian carcinomas: a unifying hypothesis. Int. J. Gynecol. Pathol. 30, 12–21 (2011). ISI PubMed Article
  126. Ng, A. & Barker, N. Ovary and fimbrial stem cells: biology, niche and cancer origins. Nat. Rev. Mol. Cell Biol. 16, 625–638 (2015). CAS PubMed Article
  127. Ning, G. et al. The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium. J. Pathol. 234, 478–487 (2014). CAS Article
  128. Paik, D. Y. et al. Stem-like epithelial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells 30, 2487–2497 (2012). CAS PubMed Article
  129. Garrett, L. A., Vargas, S. O., Drapkin, R. & Laufer, M. R. Does the fimbria have an embryologic origin distinct from that of the rest of the fallopian tube? Fertil. Steril. 90, 2008.e5–2008.e8 (2008).
  130. Bahar-Shany, K. et al. Exposure of fallopian tube epithelium to follicular fluid mimics carcinogenic changes in precursor lesions of serous papillary carcinoma. Gynecol. Oncol.132, 322–327 (2014). CAS PubMed Article
  131. Kuhn, E., Kurman, R. J. & Shih, I. M. Ovarian cancer is an imported disease: fact or fiction?Curr. Obstet. Gynecol. Rep. 1, 1–9 (2012). PubMed Article
  132. Cheng, E. J. et al. Molecular genetic analysis of ovarian serous cystadenomas. Lab. Invest.84, 778–784 (2004). CAS ISI PubMed Article
  133. Ho, C. L., Kurman, R. J., Dehari, R. & Wang, T. L. & Shih, l.-M. Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res. 64, 6915–6918 (2004). CAS ISI PubMed Article
  134. Scully, R. E. Pathology of ovarian cancer precursors. J. Cell. Biochem. Suppl. 23, 208–218 (1995). CAS PubMed Article
  135. Kwon, J. S. et al. Costs and benefits of opportunistic salpingectomy as an ovarian cancer prevention strategy. Obstet. Gynecol. 125, 338–345 (2015). PubMed Article
  136. Morelli, M. et al. Prophylactic salpingectomy in premenopausal low-risk women for ovarian cancer: primum non nocereGynecol. Oncol. 129, 448–451 (2013). Article
  137. Arts-de Jong, M. et al. Risk-reducing salpingectomy with delayed oophorectomy in BRCA1/2 mutation carriers: patients' and professionals' perspectives. Gynecol. Oncol. 136, 305–310 (2015). Article
  138. Harmsen, M. G. et al. Early salpingectomy (TUbectomy) with delayed oophorectomy to improve quality of life as alternative for risk-reducing salpingo-oophorectomy in BRCA1/2 mutation carriers (TUBA study): a prospective non-randomised multicentre study. BMC Cancer 15, 593 (2015). CAS Article
  139. Kwon, J. S. et al. Prophylactic salpingectomy and delayed oophorectomy as an alternative for BRCA mutation carriers. Obstet. Gynecol. 121, 14–24 (2013). PubMed Article
  140. [No authors listed.] The reduction in risk of ovarian cancer associated with oral-contraceptive use. The Cancer and Steroid Hormone Study of the Centers for Disease Control and the National Institute of Child Health and Human Development. N. Engl. J. Med. 316, 650–655 (1987). ISI PubMed
  141. Hankinson, S. E. et al. A quantitative assessment of oral contraceptive use and risk of ovarian cancer. Obstet. Gynecol. 80, 708–714 (1992). CAS ISI PubMed
  142. Havrilesky, L. J. et alOral Contraceptive Use for the Primary Prevention of Ovarian Cancer (AHRQ Publication, 2013).
  143. Pike, M. C. et al. Hormonal factors and the risk of invasive ovarian cancer: a population-based case–control study. Fertil. Steril. 82, 186–195 (2004). ISI PubMed Article
  144. Schildkraut, J. M., Calingaert, B., Marchbanks, P. A., Moorman, P. G. & Rodriguez, G. C.Impact of progestin and estrogen potency in oral contraceptives on ovarian cancer risk. J. Natl Cancer Inst. 94, 32–38 (2002). CAS PubMed Article
  145. Collaborative Group on Epidemiological Studies of Ovarian Cancer. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 371, 303–314 (2008). CAS ISI PubMed Article
  146. Antoniou, A. C. et al. Reproductive and hormonal factors, and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers: results from the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiol. Biomarkers Prev. 18, 601–610 (2009). CAS ISI PubMed Article
  147. Modan, B. et al. Parity, oral contraceptives, and the risk of ovarian cancer among carriers and noncarriers of a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 345, 235–240 (2001). CAS ISI PubMed Article
  148. Narod, S. A. et al. Oral contraceptives and the risk of hereditary ovarian cancer. Hereditary Ovarian Cancer Clinical Study Group. N. Engl. J. Med. 339, 424–428 (1998). CAS ISI PubMed Article
  149. Ng, A. et alLgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat. Cell Biol. 16, 745–757 (2014). CAS PubMed Article
  150. Lau, A. et al. Altered expression of inflammation-associated genes in oviductal cells following follicular fluid exposure: implications for ovarian carcinogenesis. Exp. Biol. Med. 239, 24–32 (2014). CAS Article
  151. McDaniel, A. S. et al. Next-generation sequencing of tubal intraepithelial carcinomas. JAMA Oncol. 1, 1128–1132 (2015). PubMed Article
  152. Rabban, J. T., Vohra, P. & Zaloudek, C. J. Nongynecologic metastases to fallopian tube mucosa: a potential mimic of tubal high-grade serous carcinoma and benign tubal mucinous metaplasia or nonmucinous hyperplasia. Am. J. Surg. Pathol. 39, 35–51 (2015). Article
  153. Reyes, C., Murali, R. & Park, K. J. Secondary involvement of the adnexa and uterine corpus by carcinomas of the uterine cervix: a detailed morphologic description. Int. J. Gynecol. Pathol. 34, 551–563 (2015). CAS Article
  154. Scully, R. E. & Richardson, G. S. Luteinization of the stroma of metastatic cancer involving the ovary and its endocrine significance. Cancer 14, 827–840 (1961). CAS Article
  155. Pfleiderer, A. Jr & Teufel, G. Incidence and histochemical investigation of enzymatically active cells in stroma of ovarian tumors. Am. J. Obstet. Gynecol. 102, 997–1003 (1968). Article
  156. Jacobs, I. J. et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 387, 945–956 (2016). PubMed Article
  157. Ardighieri, L. et al. Characterization of the immune cell repertoire in the normal fallopian tube. Int. J. Gynecol. Pathol. 33, 581–591 (2014). CAS Article
  158. Ottolenghi, C. et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum. Mol. Genet. 16, 2795–2804 (2007). CAS ISI PubMedArticle
  159. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014). CAS PubMed Article