Skip to main content
Top

27-07-2017 | Non-small-cell lung cancer | Book chapter | Article

12. Liquid Biopsy in Non-Small Cell Lung Cancer (NSCLC)

Authors: Christian Rolfo, Marta Castiglia, Alessandro Perez, Pablo Reclusa, Patrick Pauwels, Laure Sober, Francesco Passiglia, Antonio Russo

Publisher: Springer International Publishing

Abstract

Lung cancer is the leading cause of cancer deaths worldwide. To date, the gold standard for the molecular analysis of a patient affected by NSCLC is the tissue biopsy. The discovery of activating mutations and rearrangements in specific genes has revolutionized the therapeutic approaches of lung cancer over the last years. For this reason, a strict “molecular follow-up” is mandatory to evaluate patient’s disease evolution. Indeed, liquid biopsy has raised as the “new ambrosia of researchers” as it could help clinicians to identify both prognostic and predictive biomarkers in a more accessible way. Liquid biopsy analysis can be used in different moments starting from diagnosis to relapse, earning multiple clinical meanings, offering thus a noninvasive but valid method to detect actionable mutations. Although the implementation of both exosomes and CTCs in clinical practice is several steps back, new advances and discoveries make them, together with the ctDNA, a very promising tool. In the following chapter we will discuss the recent advances of liquid biopsy in NSCLC highlighting the possible clinical utility of CTCs, ctDNA and exosomes.
Literature
1.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin [Internet]. 2011;61. Available from: http://​dx.​doi.​org/​10.​3322/​caac.​20107.
2.
Passiglia F, Bronte G, Castiglia M, Listi A, Calo V, Toia F, et al. Prognostic and predictive biomarkers for targeted therapy in NSCLC: for whom the bell tolls? Expert Opin Biol Ther England. 2015;15(11):1553–66.CrossRef
3.
Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017 Feb 16;376(7):629-40.
4.
Drizou M, Kotteas EA, Syrigos N. Treating patients with ALK-rearranged non-small-cell lung cancer: mechanisms of resistance and strategies to overcome it. Clin Transl Oncol. Italy; 2017.
5.
Ho C-C, Liao W-Y, Lin C-A, Shih J-Y, Yu C-J, Chih-Hsin Yang J. Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J Thorac Oncol. United States; 2016.
6.
Kobayashi Y, Azuma K, Nagai H, Kim YH, Togashi Y, Sesumi Y, et al. Characterization of EGFR T790M, L792F, and C797S mutations as mechanisms of acquired resistance to afatinib in lung cancer. Mol Cancer Ther. United States; 2016.
7.
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med [Internet]. Massachusetts Medical Society; 2004;351(27):2817–26. Available from: http://​dx.​doi.​org/​10.​1056/​NEJMoa041588.
8.
Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al. American society of clinical oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti–epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol [Internet]. American Society of Clinical Oncology; 2009;27(12):2091–6. Available from: http://​ascopubs.​org/​doi/​abs/​10.​1200/​JCO.​2009.​21.​9170.
9.
Kuiper JL, Heideman DAM, Thunnissen E, Paul MA, van Wijk AW, Postmus PE, et al. Incidence of T790M mutation in (sequential) rebiopsies in EGFR-mutated NSCLC-patients. Lung Cancer. Ireland. 2014;85(1):19–24.CrossRef
10.
Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, Baggerman G, et al. Liquid biopsies in lung cancer: The new ambrosia of researchers. Biochim Biophys Acta. Elsevier B.V. 2014;1846(2):539–46.
11.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2014;144(5):646–74. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S009286741100127​9 CrossRef
12.
Feng H, Wang X, Zhang Z, Tang C, Ye H, Jones L, et al. Identification of genetic mutations in human lung cancer by targeted sequencing. Cancer Inform [Internet]. Libertas Academica. 2015;14:83–93. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC4489668/​
13.
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature [Internet]. Nature Publishing Group; 2007;448(7153):561–6. Available from: http://​dx.​doi.​org/​10.​1038/​nature05945.
14.
Qian H, Gao F, Wang H, Ma F. The efficacy and safety of crizotinib in the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer: a meta-analysis of clinical trials. BMC Cancer. England. 2014;14:683.CrossRef
15.
Reck M, van Zandwijk N, Gridelli C, Baliko Z, Rischin D, Allan S, et al. Erlotinib in advanced non-small cell lung cancer: efficacy and safety findings of the global phase IV tarceva lung cancer survival treatment study. J Thorac Oncol [Internet]. 2010;5(10):1616–1622. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S155608641531809​8.
16.
Rolfo C, Giovannetti E, Hong DS, Bivona T, Raez LE, Bronte G, et al. Novel therapeutic strategies for patients with NSCLC that do not respond to treatment with EGFR inhibitors. Cancer Treat Rev. Netherlands. 2014;40(8):990–1004.CrossRef
17.
Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. United States. 2010;363(18):1734–9.CrossRef
18.
Scheffler M, Merkelbach-Bruse S, Bos M, Fassunke J, Gardizi M, Michels S, et al. Spatial tumor heterogeneity in lung cancer with acquired epidermal growth factor receptor-tyrosine kinase inhibitor resistance: targeting high-level MET-amplification and EGFR T790M mutation occurring at different sites in the same patient. J Thorac Oncol. United States. 2015;10(6):e40–3.CrossRef
19.
Zhao Q, Wang Z-T, Sun J-L, Han D, An D-Z, Zhang D-K, et al. Intratumoral heterogeneity of subcutaneous nodules in a never-smoker woman of lung squamous cell carcinoma detected on 18F–fluorodeoxyglucose positron emission tomography and computed tomography: a case report. Medicine (Baltimore). United States. 2015;94(21):e851.
20.
Massihnia D, Perez A, Bazan V, Bronte G, Castiglia M, Fanale D, et al. A headlight on liquid biopsies: a challenging tool for breast cancer management. Tumour Biol. Netherlands. 2016;37(4):4263–73.CrossRef
21.
Piotrowska Z, Niederst MJ, Karlovich CA, Wakelee HA, Neal JW, Mino-Kenudson M, et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. United States. 2015;5(7):713–22.CrossRef
22.
Yu N, Zhou J, Cui F, Tang X. Circulating tumor cells in lung cancer: detection methods and clinical applications. Lung [Internet]. 2015;193(2):157–71. Available from: http://​dx.​doi.​org/​10.​1007/​s00408-015-9697-7 CrossRef
23.
Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, Matsumoto S, et al. Circulating tumor cell as a diagnostic marker in primary lung cancer. Clin Cancer Res. United States. 2009;15(22):6980–6.CrossRef
24.
Wendel M, Bazhenova L, Boshuizen R, Kolatkar A, Honnatti M, Cho EH, et al. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol. England. 2012;9(1):16005.CrossRef
25.
Ge M, Shi D, Wu Q, Wang M, Li L. Fluctuation of circulating tumor cells in patients with lung cancer by real-time fluorescent quantitative-PCR approach before and after radiotherapy. J Cancer Res Ther. India. 2005;1(4):221–6.CrossRef
26.
Krebs MG, Sloane R, Priest L, Lancashire L, Hou J-M, Greystoke A, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non–small-cell lung cancer. J Clin Oncol [Internet]. American Society of Clinical Oncology. 2011;29(12):1556–63. Available from: http://​ascopubs.​org/​doi/​abs/​10.​1200/​JCO.​2010.​28.​7045 CrossRef
27.
Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med [Internet]. Massachusetts Medical Society. 2008;359(4):366–77. Available from: http://​dx.​doi.​org/​10.​1056/​NEJMoa0800668 CrossRef
28.
Punnoose EA, Atwal S, Liu W, Raja R, Fine BM, Hughes BGM, et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res. United States. 2012;18(8):2391–401.CrossRef
29.
Tan CL, Lim TH, Lim TK, Tan DS-W, Chua YW, Ang MK, et al. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer. Oncotarget. United States. 2016;7(17):23251–62.CrossRef
30.
Ilie M, Long E, Butori C, Hofman V, Coelle C, Mauro V, et al. ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma. Ann Oncol Off J Eur Soc Med Oncol. England. 2012;23(11):2907–13.CrossRef
31.
Pailler E, Adam J, Barthelemy A, Oulhen M, Auger N, Valent A, et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J Clin Oncol. United States. 2013;31(18):2273–81.CrossRef
32.
He W, Xu D, Wang Z, Xiang X, Tang B, Li S, et al. Detecting ALK-rearrangement of CTC enriched by nanovelcro chip in advanced NSCLC patients. Oncotarget. United States; 2016.
33.
Perez-Callejo D, Romero A, Provencio M, Torrente M. Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl lung cancer Res. China; 2016;5(5):455–465.
34.
Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PEY, Van Meerbeeck J, Lardon F, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. Ireland; 2016.
35.
Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. Australia. 2011;32(4):177–95.
36.
Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed [Internet]. BMA House, Tavistock Square, London, WC1H 9JR: BMJ Publishing Group; 2013;98(6):236–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC3841808/​.
37.
Qian X, Liu J, Sun Y, Wang M, Lei H, Luo G, et al. Circulating cell-free DNA has a high degree of specificity to detect exon 19 deletions and the single-point substitution mutation L858R in non-small cell lung cancer. Oncotarget. United States. 2016;7(20):29154–65.CrossRef
38.
Luo J, Shen L, Zheng D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci Rep. England. 2014;4:6269.CrossRef
39.
Wu Y, Liu H, Shi X, Song Y. Can EGFR mutations in plasma or serum be predictive markers of non-small-cell lung cancer? A meta-analysis. Lung Cancer. Ireland. 2015;88(3):246–53.CrossRef
40.
Qiu M, Wang J, Xu Y, Ding X, Li M, Jiang F, et al. Circulating tumor DNA is effective for the detection of EGFR mutation in non-small cell lung cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. United States. 2015;24(1):206–12.CrossRef
41.
Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O’Connell A, Feeney N, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. United States. 2016;2(8):1014–22.CrossRef
42.
Reck M, Hagiwara K, Han B, Tjulandin S, Grohe C, Yokoi T, et al. ctDNA determination of EGFR mutation status in European and Japanese patients with advanced NSCLC: the ASSESS study. J Thorac Oncol. United States. 2016;11(10):1682–9.CrossRef
43.
Villaflor V, Won B, Nagy R, Banks K, Lanman RB, Talasaz A, et al. Biopsy-free circulating tumor DNA assay identifies actionable mutations in lung cancer. Oncotarget. United States. 2016;7(41):66880–91.CrossRef
44.
Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. United States. 2016;22(23):5772–82.CrossRef
45.
Chen K-Z, Lou F, Yang F, Zhang J-B, Ye H, Chen W, et al. Circulating tumor DNA detection in early-stage non-small cell lung cancer patients by targeted sequencing. Sci Rep. England. 2016;6:31985.CrossRef
46.
Dietz S, Schirmer U, Merce C, von Bubnoff N, Dahl E, Meister M, et al. Low input whole-exome sequencing to determine the representation of the tumor exome in circulating DNA of non-small cell lung cancer patients. PLoS One. United States. 2016;11(8):e0161012.CrossRef
47.
Wang W, Song Z, Zhang Y. A comparison of ddPCR and ARMS for detecting EGFR T790M status in ctDNA from advanced NSCLC patients with acquired EGFR-TKI resistance. Cancer Med. United States. 2016.
48.
Khozin S, Weinstock C, Blumenthal GM, Cheng J, He K, Zhuang L, et al. Osimertinib for the treatment of metastatic epidermal growth factor T970M positive non-small cell lung cancer. Clin Cancer Res. United States. 2016.
49.
Janne PA, Yang JC-H, Kim D-W, Planchard D, Ohe Y, Ramalingam SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. United States. 2015;372(18):1689–99.CrossRef
50.
Thress KS, Brant R, Carr TH, Dearden S, Jenkins S, Brown H, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. Ireland. 2015;90(3):509–15.CrossRef
51.
Greig SL. Osimertinib: first global approval. Drugs. New Zealand. 2016;76(2):263–73.
52.
Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20:1698–705.CrossRefPubMedPubMedCentral
53.
Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. United States. 2016;34(28):3375–82.CrossRef
54.
Frenel JS, Carreira S, Goodall J, Roda D, Perez-Lopez R, Tunariu N, et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clin Cancer Res. United States. 2015;21(20):4586–96.CrossRef
55.
Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ, et al. Corrigendum: circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. England. 2016;7:13513.CrossRef
56.
Paweletz CP, Sacher AG, Raymond CK, Alden RS, O’Connell A, Mach SL, et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res. United States. 2016;22(4):915–22.CrossRef
57.
Reckamp KL, Melnikova VO, Karlovich C, Sequist LV, Camidge DR, Wakelee H, et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol. United States. 2016;11(10):1690–700.CrossRef
58.
Giallombardo M, Chacártegui Borrás J, Castiglia M, Van Der Steen N, Mertens I, Pauwels P, et al. Exosomal miRNA analysis in non-small cell lung cancer (NSCLC) patients’ plasma through qPCR: a feasible liquid biopsy tool. J Vis Exp. 2016;111:e53900. Available from: http://​www.​jove.​com/​video/​53900
59.
Reclusa P, Sirera R, Araujo A, Giallombardo M, Valentino A, Sorber L, et al. Exosomes genetic cargo in lung cancer: a truly Pandora’s box. Transl lung cancer Res. China. 2016;5(5):483–91.CrossRef
60.
Adi Harel S, Bossel Ben-Moshe N, Aylon Y, Bublik DR, Moskovits N, Toperoff G, et al. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ. England. 2015;22(8):1328–40.CrossRef
61.
Yuan D, Xu J, Wang J, Pan Y, Fu J, Bai Y, et al. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget. 2016;7(22):32707–22.CrossRefPubMedPubMedCentral
62.
Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He Y, et al. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res. England. 2016;35:7.CrossRef
63.
Krug AK, Karlovich C, Koestler T, Brinkmann K, Spiel A, Emenegger J, et al. Abstract B136: plasma EGFR mutation detection using a combined exosomal RNA and circulating tumor DNA approach in patients with acquired resistance to first-generation EGFR-TKIs. Am Assoc Cancer Res [Internet]. Molecular Cancer Therapeutics. 2016;14(12 Supplement 2):B136–.B136. Available from: http://​mct.​aacrjournals.​org/​content/​14/​12_​Supplement_​2/​B136.
64.
Rolfo C, Laes JF, Reclusa P, Valentino A, Lienard M, Gil-Bazo I, et al. P2.01-093 Exo-ALK proof of concept: exosomal analysis of ALK alterations in advanced NSCLC patients. J Thorac Oncol [Internet]. Elsevier. 2017;12(1):S844–5. Available from: http://​dx.​doi.​org/​10.​1016/​j.​jtho.​2016.​11.​1145 CrossRef
65.
Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie. Germany. 2013;68(12):969–73.
66.
Sandfeld-Paulsen B, Aggerholm-Pedersen N, Bæk R, Jakobsen KR, Meldgaard P, Folkersen BH, et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol [Internet]. 2016;10(10):1595–602. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S157478911630123​5 CrossRef
67.
Wang LZ, Soo RA, Thuya WL, Wang TT, Guo T, Lau JA, Wong FC, Wong ALA, Lee SC, Sze SK, Goh BC. Exosomal protein FAM3C as a potential novel biomarker for non-small cell lung cancer. J Clin Oncol 32, 2014 (suppl; abstr e22162).
68.
Sandfeld-Paulsen B, Jakobsen KR, Baek R, Folkersen BH, Rasmussen TR, Meldgaard P, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016;11:1701–10.CrossRefPubMed
69.
Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine Nanotechnology, Biol Med [Internet]. 2016;12(3):655–64. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S154996341500202​6 CrossRef
70.
Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res. United States. 2010;70(4):1281–5.CrossRef
71.
Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med [Internet]. 2005;3(1):1–8. Available from: http://​dx.​doi.​org/​10.​1186/​1479-5876-3-9 CrossRef
72.
Nilsson RJA, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. United States. 2011;118(13):3680–3.
73.
Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. United States. 2015;28(5):666–76.CrossRef
74.
Nilsson RJA, Karachaliou N, Berenguer J, Gimenez-Capitan A, Schellen P, Teixido C, et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget. United States. 2016;7(1):1066–75.CrossRef