Skip to main content
Top

03-07-2018 | Non-small-cell lung cancer | Article

Early stage NSCLC — challenges to implementing ctDNA-based screening and MRD detection

Journal: Nature Reviews Clinical Oncology

Authors: Christopher Abbosh, Nicolai J. Birkbak, Charles Swanton

Publisher: Nature Publishing Group UK

Abstract

Circulating tumour DNA (ctDNA) refers to the fraction of cell-free DNA in a patient’s blood that originates from a tumour. Advances in DNA sequencing technologies and our understanding of the molecular biology of tumours have resulted in increased interest in exploiting ctDNA as a tool to facilitate earlier detection of cancer and thereby improve therapeutic outcomes by enabling early intervention. ctDNA analysis might also have utility in the adjuvant therapeutic setting by enabling the identification of patients at a high risk of disease recurrence on the basis of the detection of post-surgical minimal (or molecular) residual disease (MRD). This approach could provide the capability to adapt clinical trials in the adjuvant setting in order to optimize risk stratification, and we argue that this objective is achievable with current technologies. Herein, we evaluate contemporary next-generation sequencing (NGS) approaches to ctDNA detection with a focus on non-small-cell lung cancer. We explain the technical and analytical challenges to low-frequency mutation detection using NGS-based ctDNA profiling and evaluate the feasibility of ctDNA profiling in both screening and MRD assessment contexts.
Literature
1.
Goldstraw, P. et al. The IASLC Lung Cancer Staging Project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 11, 39–51 (2016).CrossRefPubMed
2.
Pignon, J. P. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2008).CrossRefPubMed
3.
Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy for non-small cell lung cancer. Cochrane Database Syst. Rev. 2, CD002139 (2000).
4.
Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl Med. 9, eaan2415 (2017).CrossRef
5.
Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).CrossRefPubMedPubMedCentral
6.
Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).CrossRefPubMedPubMedCentral
7.
Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7, 1394–1403 (2017).CrossRefPubMedPubMedCentral
8.
Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).CrossRefPubMedPubMedCentral
9.
Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl Med. 8, 346ra392 (2016).CrossRef
10.
Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl Med. 7, 302ra133 (2015).CrossRefPubMed
11.
Beaver, J. A. et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 20, 2643–2650 (2014).CrossRefPubMedPubMedCentral
12.
Pantel, K. & Alix-Panabières, C. Tumour microenvironment: informing on minimal residual disease in solid tumours. Nat. Rev. Clin. Oncol. 14, 325–326 (2017).CrossRefPubMed
13.
Burgener, J. M., Rostami, A., De Carvalho, D. D. & Bratman, S. V. Cell-free DNA as a post-treatment surveillance strategy: current status. Semin. Oncol. 44, 330–346 (2017).CrossRefPubMed
14.
Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).CrossRefPubMedPubMedCentral
15.
Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl Med. 4, 136ra168 (2012).CrossRef
16.
Dawson, S.-J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).CrossRefPubMed
17.
Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).CrossRefPubMedPubMedCentral
18.
Guibert, N. et al. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann. Oncol. 29, 1049–1055 (2018).CrossRefPubMed
19.
Parkinson, C. A. et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLOS Med. 13, e1002198 (2016).CrossRef
20.
Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 9530–9535 (2011).CrossRefPubMed
21.
Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).CrossRefPubMed
22.
Park, G. et al. Characterization of background noise in capture-based targeted sequencing data. Genome Biol. 18, 136 (2017).CrossRefPubMedPubMedCentral
23.
Hestand, M. S., Houdt, J. V., Cristofoli, F. & Vermeesch, J. R. Polymerase specific error rates and profiles identified by single molecule sequencing. Mutat. Res. 784–785, 39–45 (2016).CrossRefPubMed
24.
Chen, G., Mosier, S., Gocke, C. D., Lin, M. T. & Eshleman, J. R. Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Mol. Diagn. Ther. 18, 587–593 (2014).CrossRefPubMedPubMedCentral
25.
Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).CrossRefPubMed
26.
Manley, L. J., Ma, D. & Levine, S. S. Monitoring error rates in Illumina sequencing. J. Biomol. Tech. 27, 125–128 (2016).PubMedPubMedCentral
27.
Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).CrossRefPubMed
28.
Szpechcinski, A. et al. Cell-free DNA levels in plasma of patients with non-small-cell lung cancer and inflammatory lung disease. Br. J. Cancer 113, 476–483 (2015).CrossRefPubMedPubMedCentral
29.
Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).CrossRefPubMedPubMedCentral
30.
Lui, Y. Y. et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin. Chem. 48, 421–427 (2002).PubMed
31.
Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).CrossRefPubMedPubMedCentral
32.
Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).CrossRefPubMedPubMedCentral
33.
Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).CrossRefPubMedPubMedCentral
34.
Razavi, P. et al. Cell-free DNA (cfDNA) mutations from clonal hematopoiesis: implications for interpretation of liquid biopsy tests. J. Clin. Oncol. 35, 11526 (2017).CrossRef
35.
Hu, Y. et al. False positive plasma genotyping due to clonal hematopoiesis. Clin. Cancer Res. https://​doi.​org/​10.​1158/​1078-0432.​CCR-18-0143 (2018).CrossRefPubMed
36.
Higgins, K. A. et al. Lymphovascular invasion in non-small-cell lung cancer: implications for staging and adjuvant therapy. J. Thorac. Oncol. 7, 1141–1147 (2012).CrossRefPubMed
37.
Warth, A. et al. Tumour cell proliferation (Ki-67) in non-small cell lung cancer: a critical reappraisal of its prognostic role. Br. J. Cancer 111, 1222 (2014).CrossRefPubMedPubMedCentral
38.
Duhaylongsod, F. G. et al. Lung tumor growth correlates with glucose metabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann. Thorac. Surg. 60, 1348–1352 (1995).CrossRefPubMed
39.
Higashi, K. et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J. Nucl. Med. 43, 39–45 (2002).PubMed
40.
Gkogkou, C., Frangia, K., Saif, M. W., Trigidou, R. & Syrigos, K. Necrosis and apoptotic index as prognostic factors in non-small cell lung carcinoma: a review. SpringerPlus 3, 120 (2014).CrossRefPubMedPubMedCentral
41.
Diaz, L. A. Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).CrossRefPubMedPubMedCentral
42.
Winther-Larsen, A. et al. Correlation between circulating mutant DNA and metabolic tumour burden in advanced non-small cell lung cancer patients. Br. J. Cancer 117, 704–709 (2017).CrossRefPubMedPubMedCentral
43.
Pécuchet, N. et al. Base-position error rate analysis of next-generation sequencing applied to circulating tumor DNA in non-small cell lung cancer: a prospective study. PLOS Med. 13, e1002199 (2016).CrossRef
44.
Aberle, D. R. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).CrossRefPubMed
45.
Haque, I. S. & Elemento, O. Challenges in using ctDNA to achieve early detection of cancer. Preprint at bioRxiv https://​doi.​org/​10.​1101/​237578 (2017).CrossRef
46.
Krug, A. K. et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann. Oncol. 29, 700–706 (2017).CrossRefPubMedCentral
47.
Patz, E. F. Jr et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern. Med. 174, 269–274 (2014).CrossRefPubMedPubMedCentral
48.
Winton, T. et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N. Engl. J. Med. 352, 2589–2597 (2005).CrossRefPubMed
49.
Lou, F., Sima, C. S., Rusch, V. W., Jones, D. R. & Huang, J. Differences in patterns of recurrence in early-stage versus locally advanced non-small cell lung cancer. Ann. Thorac. Surg. 98, 1755–1761 (2014).CrossRefPubMedPubMedCentral
50.
Kelsey, C. R. et al. Local recurrence after surgery for early stage lung cancer: an 11-year experience with 975 patients. Cancer 115, 5218–5227 (2009).CrossRefPubMed
51.
Sugimura, H. et al. Survival after recurrent nonsmall-cell lung cancer after complete pulmonary resection. Ann. Thorac. Surg. 83, 409–417 (2007).CrossRefPubMed
52.
Dziedzic, D. A., Rudzinski, P., Langfort, R. & Orlowski, T. Risk factors for local and distant recurrence after surgical treatment in patients with non-small-cell lung cancer. Clin. Lung Cancer 17, e157–e167 (2016).CrossRefPubMed
53.
Artal Cortés, Á., Calera Urquizu, L. & Hernando Cubero, J. Adjuvant chemotherapy in non-small cell lung cancer: state-of-the-art. Transl Lung Cancer Res. 4, 191–197 (2015).PubMedPubMedCentral
54.
Ng, S. B. et al. Individualised multiplexed circulating tumour DNA assays for monitoring of tumour presence in patients after colorectal cancer surgery. Sci. Rep. 7, 40737 (2017).CrossRefPubMedPubMedCentral
55.
Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never smokers. Cell 150, 1121–1134 (2012).CrossRefPubMedPubMedCentral
56.
Salazar, M. C. et al. Association of delayed adjuvant chemotherapy with survival after lung cancer surgery. JAMA Oncol. 3, 610–619 (2017).CrossRefPubMedPubMedCentral
57.
Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).CrossRefPubMedPubMedCentral
58.
Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).CrossRefPubMedPubMedCentral
59.
Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J. Clin. Oncol. 36, 1631–1641 (2018).CrossRefPubMed
60.
Denis, J. A., Guillerm, E., Coulet, F., Larsen, A. K. & Lacorte, J.-M. The role of BEAMing and digital PCR for multiplexed analysis in molecular oncology in the era of next-generation sequencing. Mol. Diagn. Ther. 21, 587–600 (2017).CrossRefPubMed