Skip to main content
Top

01-12-2016 | Nausea and vomiting | Book chapter | Article

2. The Physiology and Pharmacology of Nausea and Vomiting Induced by Anticancer Chemotherapy in Humans

Authors: Paul L. R. Andrews, DSc, John A. Rudd, PhD

Publisher: Springer International Publishing

Abstract

The basic pathways inducing vomiting, the brainstem sites of integration and the main motor components had all been described by the early 1950s but relatively little was known about how cancer chemotherapeutic agents induced emesis until research was prompted by the clinical use of cisplatin thirty years later. The acute phase of cisplatin-induced emesis is predominantly driven by 5-hydroxytryptamine released from enterochromaffin cells in the small intestine activating 5-HT3 receptors located on vagal afferent terminals. Other substances such as prostanoids and substance P also interact with receptors on the afferents and are proposed to be involved in local inflammatory responses. Although for the delayed phase of cisplatin-induced emesis a contribution of the vagal afferents driven by an inflammatory response in the gut cannot be excluded, the evidence supports release of an endocrine mediator (unidentified) from the gut but acting on the area postrema to activate central pathways. The potential mechanisms by which cisplatin and other chemotherapeutic agents act on the gut epithelium and enteric neurones are reviewed. The sites and mechanisms of action of 5-HT3 and NK1 receptor antagonists are discussed in relation to the emetic pathways. The biologically significant, aversive, unpleasant sensation of nausea is a focus of the chapter because it impacts on the patient’s quality of life. The potential roles of vasopressin secretion, disturbance of gastric myoelectric activity and central pathways implicated in the genesis of the sensation are discussed in the wider context of the relative efficacy of anti-emetic drugs against nausea as compared to retching and vomiting.
Literature
1.
Alfieri AB, Cubeddu LX (1995) Treatment with para-chlorophenylalanine antagonises the emetic response and the serotonin-releasing actions of cisplatin in cancer patients. Br J Cancer 71(3):629–632PubMedCentralPubMedCrossRef
2.
Allen ME, McKay C, Eaves DM, Hamilton D (1986) Naloxone enhances motion sickness: endorphins implicated. Aviat Space Environ Med 57(7):647–653PubMed
3.
Andersen R, Krohg K (1976) Pain as a major cause of postoperative nausea. Can Anaesth Soc J 23(4):366–369PubMedCrossRef
4.
Andrews PLR, Davis CJ, Bingham S, Davidson HI, Hawthorn J, Maskell L (1990) The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Can J Physiol Pharmacol 68(2):325–345PubMedCrossRef
5.
Andrews PLR, Sanger GJ (2014) Nausea and the quest for the perfect anti-emetic. Eur J Pharmacol 722:108–121. doi:10.​1016/​j.​ejphar.​2013.​09.​072 PubMedCrossRef
6.
Andrews PLR (1994) 5-HT3 receptors and anti-emesis. In: King FD, Jones BJ, Sanger GJ (eds) 5-hydroxytryptamine-3 receptor antagonists. CRC Press, Boca Raton, pp 255–317
7.
Andrews PLR, Davis CJ (1993) The mechanisms of emesis induced by anti-cancer therapies. In: Andres PLR, Sanger GJ (eds) Emesis and anti-cancer therapy. Chapman and Hall Medical, London, p 256
8.
Andrews PLR, Rudd JA (2004) The role of tachykinins and the tachykinin receptor in nausea and emesis. In: Holzer P (ed) Handbook of experimental pharmacology, vol 164. Springer, Berlin, pp 359–440
9.
Babaoglu MO, Bayar B, Aynacioglu AS, Kerb R, Abali H, Celik I, Bozkurt A (2005) Association of the ABCB1 3435C>T polymorphism with antiemetic efficacy of 5-hydroxytryptamine type 3 antagonists. Clin Pharmacol Ther 78(6):619–626. doi:10.​1016/​j.​clpt.​2005.​08.​015 PubMedCrossRef
10.
Barcroft H, Swan HJC (1953) Sympathetic control of human blood vessels. Edward Arnold & Co., London
11.
Barnes JM, Barnes NM, Costall B, Naylor RJ, Tattersall FD (1988) Reserpine, para-chlorophenylalanine and fenfluramine antagonise cisplatin-induced emesis in the ferret. Neuropharmacology 27(8):783–790PubMedCrossRef
12.
Barnes NM, Ge J, Jones WG, Naylor RJ, Rudd JA (1990) Cisplatin induced emesis: preliminary results indicative of changes in plasma levels of 5-hydroxytryptamine. Br J Cancer 62(5):862–864PubMedCentralPubMedCrossRef
13.
Barreca T, Corsini G, Cataldi A, Garibaldi A, Cianciosi P, Rolandi E, Franceschini R (1996) Effect of the 5-HT3 receptor antagonist ondansetron on plasma AVP secretion: a study in cancer patients. Biomed Pharmacother 50(10):512–514PubMedCrossRef
14.
Bearcroft CP, Andre EA, Farthing MJ (1997) In vivo effects of the 5-HT3 antagonist alosetron on basal and cholera toxin-induced secretion in the human jejunum: a segmental perfusion study. Aliment Pharmacol Ther 11(6):1109–1114PubMedCrossRef
15.
Bermudez J, Boyle EA, Miner WD, Sanger GJ (1988) The anti-emetic potential of the 5-hydroxytryptamine3 receptor antagonist BRL 43694. Br J Cancer 58(5):644–650PubMedCentralPubMedCrossRef
16.
Bertrand PP, Bertrand RL (2010) Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci 153(1–2):47–57. doi:10.​1016/​j.​autneu.​2009.​08.​002 PubMedCrossRef
17.
Beswick FW (1983) Chemical agents used in riot control and warfare. Hum Toxicol 2(2):247–256PubMedCrossRef
18.
Bhandari P, Gupta YK, Seth SD (1988) Effect of diethyldithiocarbamate on cisplatin induced emesis in dogs. Asia Pac J Pharmacol 3:247–250
19.
Borison HL (1989) Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Prog Neurobiol 32(5):351–390PubMedCrossRef
20.
Borst P, Schinkel AH (2013) P-glycoprotein ABCB1: a major player in drug handling by mammals. J Clin Invest 123(10):4131–4133. doi:10.​1172/​JCI70430 PubMedCentralPubMedCrossRef
21.
Bouganim N, Dranitsaris G, Hopkins S, Vandermeer L, Godbout L, Dent S, Wheatley-Price P, Milano C, Clemons M (2012) Prospective validation of risk prediction indexes for acute and delayed chemotherapy-induced nausea and vomiting. Curr Oncol 19(6):e414–e421. doi:10.​3747/​co.​19.​1074 PubMedCentralPubMedCrossRef
22.
Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP (2013) Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10(5):286–296. doi:10.​1038/​nrgastro.​2013.​29 PubMedCrossRef
23.
Cannon DS, Best MR, Batson JD, Feldman M (1983) Taste familiarity and apomorphine-induced taste aversions in humans. Behav Res Ther 21(6):669–673PubMedCrossRef
24.
Caras SD, Soykan I, Beverly V, Lin Z, McCallum RW (1997) The effect of intravenous vasopressin on gastric myoelectrical activity in human subjects. Neurogastroenterol Motil 9(3):151–156PubMedCrossRef
25.
Castejon AM, Paez X, Hernandez L, Cubeddu LX (1999) Use of intravenous microdialysis to monitor changes in serotonin release and metabolism induced by cisplatin in cancer patients: comparative effects of granisetron and ondansetron. J Pharmacol Exp Ther 291(3):960–966PubMed
26.
Christie DA, Tansey EM (2007) The discovery, use and impact of platinum salts as chemotherapy agents for cancer. Welcome Witn Twentieth Century Med 30:117
27.
Ciarimboli G (2012) Membrane transporters as mediators of Cisplatin effects and side effects. Scientifica 2012:473829. doi:10.​6064/​2012/​473829 PubMedCentralPubMedCrossRef
28.
Cubeddu LX (1992) Mechanisms by which cancer chemotherapeutic drugs induce emesis. Semin Oncol 19(6 Suppl 15):2–13PubMed
29.
Cubeddu LX, Hoffmann IS (1993) Participation of serotonin on early and delayed emesis induced by initial and subsequent cycles of cisplatinum-based chemotherapy: effects of antiemetics. J Clin Pharmacol 33(8):691–697PubMedCrossRef
30.
Cubeddu LX, O’Connor DT, Hoffmann I, Parmer RJ (1995) Plasma chromogranin A marks emesis and serotonin release associated with dacarbazine and nitrogen mustard but not with cyclophosphamide-based chemotherapies. Br J Cancer 72(4):1033–1038PubMedCentralPubMedCrossRef
31.
Cubeddu LX, O’Connor DT, Parmer RJ (1995) Plasma chromogranin A: a marker of serotonin release and of emesis associated with cisplatin chemotherapy. J Clin Oncol 13(3):681–687PubMed
32.
Darmani NA, Crim JL, Janoyan JJ, Abad J, Ramirez J (2009) A re-evaluation of the neurotransmitter basis of chemotherapy-induced immediate and delayed vomiting: evidence from the least shrew. Brain Res 1248:40–58. doi:10.​1016/​j.​brainres.​2008.​10.​063 PubMedCrossRef
33.
Darmani NA, McClanahan BA, Trinh C, Petrosino S, Valenti M, Di Marzo V (2005) Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology 49(4):502–513PubMedCrossRef
34.
Darmani NA, Ray AP (2009) Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem Rev 109(7):3158–3199. doi:10.​1021/​cr900117p PubMedCrossRef
35.
Davis CJ, Harding RK, Leslie RA, Andrews PLR (1986) The organisation of vomiting as a protective reflex: a commentary on the first day’s discussions. In: Davis CJ, Lake-Bakarr GV, Grahame-Smith DG (eds) Nausea and vomiting: mechanisms and treatment. Springer, Berlin, pp 65–75CrossRef
36.
De Jonghe BC, Horn CC (2008) Chemotherapy-induced pica and anorexia are reduced by common hepatic branch vagotomy in the rat. Am J Physiol Regul Integr Comp Physiol 294(3):R756–R765PubMedCrossRef
37.
De Jonghe BC, Horn CC (2009) Chemotherapy agent cisplatin induces 48-h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol 296(4):R902–R911. doi:10.​1152/​ajpregu.​90952.​2008, 90952.2008 [pii]
38.
Devinsky O, Frasca J, Pacia SV, Luciano DJ, Paraiso J, Doyle W (1995) Ictus emeticus: further evidence of nondominant temporal involvement. Neurology 45(6):1158–1160PubMedCrossRef
39.
Dey D, Abad J, Ray AP, Darmani NA (2010) Differential temporal changes in brain and gut substance P mRNA expression throughout the time-course of cisplatin-induced vomiting in the least shrew (Cryptotis parva). Brain Res 1310:103–112. doi:10.​1016/​j.​brainres.​2009.​11.​005
40.
Di Maio M, Gallo C, Leighl NB, Piccirillo MC, Daniele G, Nuzzo F, Gridelli C, Gebbia V, Ciardiello F, De Placido S, Ceribelli A, Favaretto AG, de Matteis A, Feld R, Butts C, Bryce J, Signoriello S, Morabito A, Rocco G, Perrone F (2015) Symptomatic toxicities experienced during anticancer treatment: agreement between patient and physician reporting in three randomized trials. J Clin Oncol 33(8):910–915. doi:10.​1200/​JCO.​2014.​57.​9334 PubMedCrossRef
41.
du Bois A, Vach W, Wechsel U, Holy R, Schaefer W (1996) 5-Hydroxyindoleacetic acid (5-HIAA) and cortisol excretion as predictors of chemotherapy-induced emesis. Br J Cancer 74(7):1137–1140PubMedCentralPubMedCrossRef
42.
Edwards CM, Carmichael J, Baylis PH, Harris AL (1989) Arginine vasopressin – a mediator of chemotherapy induced emesis? Br J Cancer 59(3):467–470PubMedCentralPubMedCrossRef
43.
Eiseman JL, Beumer JH, Rigatti LH, Strychor S, Meyers K, Dienel S, Horn CC (2015) Plasma pharmacokinetics and tissue and brain distribution of cisplatin in musk shrews. Cancer Chemother Pharmacol 75(1):143–152. doi:10.​1007/​s00280-014-2623-5 PubMedCentralPubMedCrossRef
44.
Endo T, Sugawara J, Nemoto M, Minami M, Blower PR (1998) Effects of granisetron, a selective 5-HT3 receptor antagonist, on ouabain-induced emesis in ferrets. Res Commun Mol Pathol Pharmacol 102(3):227–239PubMed
45.
Erwald R, Wiechel KL, Strandell T (1976) Effect of vasopressin on regional splanchnic blood flows in conscious man. Acta Chir Scand 142(1):36–42PubMed
46.
Eversmann T, Gottsmann M, Uhlich E, Ulbrecht G, von Werder K, Scriba PC (1978) Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. Aviat Space Environ Med 49(1 Pt 1):53–57PubMed
47.
Faas H, Feinle C, Enck P, Grundy D, Boesiger P (2001) Modulation of gastric motor activity by a centrally acting stimulus, circular vection, in humans. Am J Physiol Gastrointest Liver Physiol 280(5):G850–G857PubMed
48.
Farmer AD, Al Omran Y, Aziz Q, Andrews PLR (2014) The role of the parasympathetic nervous system in visually induced motion sickness: systematic review and meta-analysis. Exp Brain Res 232(8):2665–2673. doi:10.​1007/​s00221-014-3964-3 PubMedCrossRef
49.
Farmer AD, Ban VF, Coen SJ, Sanger GJ, Barker GJ, Gresty MA, Giampietro VP, Williams SC, Webb DL, Hellstrom PM, Andrews PLR, Aziz Q (2015) Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans. J Physiol 593(5):1183–1196. doi:10.​1113/​jphysiol.​2014.​284240 PubMedCrossRef
50.
Feldman M, Samson WK, O’Dorisio TM (1988) Apomorphine-induced nausea in humans: release of vasopressin and pancreatic polypeptide. Gastroenterology 95(3):721–726PubMed
51.
Fetting JH, Wilcox PM, Sheidler VR, Enterline JP, Donehower RC, Grochow LB (1985) Tastes associated with parenteral chemotherapy for breast cancer. Cancer Treat Rep 69(11):1249–1251PubMed
52.
Finger TE, Kinnamon SC (2011) Taste isn’t just for taste buds anymore. F1000 Biol Rep 3:20. doi:10.​3410/​B3-20 PubMedCentralPubMedCrossRef
53.
Fisher RD, Rentschler RE, Nelson JC, Godfrey TE, Wilbur DW (1982) Elevation of plasma antidiuretic hormones (ADH) associated with chemotherapy-induced emesis in man. Cancer Treat Rep 66(1):25–29PubMed
54.
Forster ER, Palmer JL (1994) Comment: Ondansetron for treating nausea and vomiting in the poisoned patient. Ann Pharmacother 28(10):1203–1204PubMed
55.
Foss JF, Yuan CS, Roizen MF, Goldberg LI (1998) Prevention of apomorphine- or cisplatin-induced emesis in the dog by a combination of methylnaltrexone and morphine. Cancer Chemother Pharmacol 42(4):287–291PubMedCrossRef
56.
Fredrikson M, Hursti T, Wik G (1995) Neural networks in chemotherapy-induced delayed nausea – a pilot-study using positron emission tomography. Oncol Rep 2(6):1001–1003PubMed
57.
Fredrikson M, Hursti TJ, Steineck G, Furst CJ, Borjesson S, Peterson C (1994) Delayed chemotherapy-induced nausea is augmented by high levels of endogenous noradrenaline. Br J Cancer 70(4):642–645PubMedCentralPubMedCrossRef
58.
Fukuda H, Koga T, Furukawa N, Nakamura E, Hatano M, Yanagihara M (2003) The site of the antiemetic action of NK1 receptor antagonists. In: Donnerer J (ed) Antiemetic therapy. Karger, Basel, pp 33–77CrossRef
59.
Fukui H, Yamamoto M, Ando T, Sasaki S, Sato S (1993) Increase in serotonin levels in the dog ileum and blood by cisplatin as measured by microdialysis. Neuropharmacology 32(10):959–968PubMedCrossRef
60.
Fukui H, Yamamoto M, Sasaki S, Sato S (1993) Involvement of 5-HT3 receptors and vagal afferents in copper sulfate- and cisplatin-induced emesis in monkeys. Eur J Pharmacol 249(1):13–18PubMedCrossRef
61.
Fukui H, Yamamoto M, Sato S (1992) Vagal afferent fibers and peripheral 5-HT3 receptors mediate cisplatin-induced emesis in dogs. Jpn J Pharmacol 59(2):221–226PubMedCrossRef
62.
Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294. doi:10.​1038/​nrgastro.​2012.​32 PubMedCrossRef
63.
Gal R (1975) Assessment of seasickness and its consequences by a method of peer evaluation. Aviat Space Environ Med 46(6):836–839PubMed
64.
Gale DA, Blakemore SJ, Cook S, Kidwai S, Moore I, Moore GBT, Moore SE, Sanger GJ, Holbrook JD, Lui Y-L, Mailik N, Andrews PLR (2005) Modulation of gene expression in the glandular and non-glandular regions of the rat stomach after treatment with the anti-cancer drug cisplatin. Gastroenterology 128:A-545, Abstr T1762
65.
Gilman A (1946) Therapeutic applications of chemical warfare agents. Fed Proc 5:285–292PubMed
66.
Golding JF (2006) Motion sickness susceptibility. Auton Neurosci 129(1–2):67–76. doi:10.​1016/​j.​autneu.​2006.​07.​019 PubMedCrossRef
67.
Gupta YK, Sharma SS (1996) Antiemetic activity of antioxidants against cisplatin-induced emesis in dogs. Environ Toxicol Pharmacol 1(3):179–184PubMedCrossRef
68.
Hagbom M, Istrate C, Engblom D, Karlsson T, Rodriguez-Diaz J, Buesa J, Taylor JA, Loitto VM, Magnusson KE, Ahlman H, Lundgren O, Svensson L (2011) Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog 7(7), e1002115. doi:10.​1371/​journal.​ppat.​1002115 PubMedCentralPubMedCrossRef
69.
Harris AL (1982) Cytotoxic-therapy-induced vomiting is mediated via enkephalin pathways. Lancet 1(8274):714–716PubMedCrossRef
70.
Harris AL, Cantwell BMJ (1986) Mechanisms and treatments of cytotoxic-induced nausea and vomiting. In: Davis CJ, Lake-Bakaar GV, Grahame-Smith DG (eds) Nausea and vomiting: mechanisms and treatment. Springer, Berlin, pp 65–75
71.
Hawthorn J, Ostler KJ, Andrews PLR (1988) The role of the abdominal visceral innervation and 5-hydroxytryptamine M-receptors in vomiting induced by the cytotoxic drugs cyclophosphamide and cis-platin in the ferret. Q J Exp Physiol 73(1):7–21PubMedCrossRef
72.
Hesketh PJ, Rossi G, Rizzi G, Palmas M, Alyasova A, Bondarenko I, Lisyanskaya A, Gralla RJ (2014) Efficacy and safety of NEPA, an oral combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting following highly emetogenic chemotherapy: a randomized dose-ranging pivotal study. Ann Oncol 25(7):1340–1346. doi:10.​1093/​annonc/​mdu110 PubMedCentralPubMedCrossRef
73.
Hesketh PJ, Van Belle S, Aapro M, Tattersall FD, Naylor RJ, Hargreaves R, Carides AD, Evans JK, Horgan KJ (2003) Differential involvement of neurotransmitters through the time course of cisplatin-induced emesis as revealed by therapy with specific receptor antagonists. Eur J Cancer 39(8):1074–1080PubMedCrossRef
74.
Higa GM, Auber ML, Altaha R, Piktel D, Kurian S, Hobbs G, Landreth K (2006) 5-Hydroxyindoleacetic acid and substance P profiles in patients receiving emetogenic chemotherapy. J Oncol Pharm Pract 12(4):201–209PubMedCrossRef
75.
Higa GM, Auber ML, Hobbs G (2012) Identification of a novel marker associated with risk for delayed chemotherapy-induced vomiting. Support Care Cancer 20(11):2803–2809. doi:10.​1007/​s00520-012-1402-2 PubMedCrossRef
76.
Hirsch AT, Dzau VJ, Majzoub JA, Creager MA (1989) Vasopressin-mediated forearm vasodilation in normal humans. Evidence for a vascular vasopressin V2 receptor. J Clin Invest 84(2):418–426. doi:10.​1172/​JCI114182
77.
Horn CC, Ciucci M, Chaudhury A (2007) Brain Fos expression during 48 h after cisplatin treatment: neural pathways for acute and delayed visceral sickness. Auton Neurosci 132(1–2):44–51PubMedCentralPubMedCrossRef
78.
Horn CC, De Jonghe BC, Matyas K, Norgren R (2009) Chemotherapy-induced kaolin intake is increased by lesion of the lateral parabrachial nucleus of the rat. Am J Physiol Regul Integr Comp Physiol 297(5):R1375–R1382. doi:10.​1152/​ajpregu.​00284.​2009 PubMedCentralPubMedCrossRef
79.
Horn CC, Kimball BA, Wang H, Kaus J, Dienel S, Nagy A, Gathright GR, Yates BJ, Andrews PLR (2013) Why can’t rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS ONE 8(4), e60537. doi:10.​1371/​journal.​pone.​0060537 PubMedCentralPubMedCrossRef
80.
Horn CC, Richardson EJ, Andrews PLR, Friedman MI (2004) Differential effects on gastrointestinal and hepatic vagal afferent fibers in the rat by the anti-cancer agent cisplatin. Auton Neurosci 115(1–2):74–81PubMedCrossRef
81.
Hu DL, Zhu G, Mori F, Omoe K, Okada M, Wakabayashi K, Kaneko S, Shinagawa K, Nakane A (2007) Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. Cell Microbiol 9(9):2267–2277. doi:10.​1111/​j.​1462-5822.​2007.​00957.​x PubMedCrossRef
82.
Hursti TJ, Borjeson S, Hellstrom PM, Avall-Lundqvist E, Stock S, Steineck G, Peterson C (2005) Effect of chemotherapy on circulating gastrointestinal hormone levels in ovarian cancer patients: relationship to nausea and vomiting. Scand J Gastroenterol 40(6):654–661PubMedCrossRef
83.
Hursti TJ, Fredrikson M, Steineck G, Borjeson S, Furst CJ, Peterson C (1993) Endogenous cortisol exerts antiemetic effect similar to that of exogenous corticosteroids. Br J Cancer 68(1):112–114PubMedCentralPubMedCrossRef
84.
Janelsins MC, Tejani MA, Kamen C, Peoples AR, Mustian KM, Morrow GR (2013) Current pharmacotherapy for chemotherapy-induced nausea and vomiting in cancer patients. Expert Opin Pharmacother 14(6):757–766. doi:10.​1517/​14656566.​2013.​776541 PubMedCentralPubMedCrossRef
85.
Jarve RK, Aggarwal SK (1997) Cisplatin-induced inhibition of the calcium-calmodulin complex, neuronal nitric oxide synthase activation and their role in stomach distention. Cancer Chemother Pharmacol 39(4):341–348. doi:10.​1007/​s002800050581 PubMedCrossRef
86.
Jordan NS, Schauer PK, Schauer A, Nightingale C, Golub G, Martin RS, Williams HM (1985) The effect of administration rate on cisplatin-induced emesis. J Clin Oncol 3(4):559–561PubMed
87.
Kiernan BD, Soykan I, Lin Z, Dale A, McCallum RW (1997) A new nausea model in humans produces mild nausea without electrogastrogram and vasopressin changes. Neurogastroenterol Motil 9(4):257–263PubMedCrossRef
88.
Kim J, Napadow V, Kuo B, Barbieri R (2011) A combined HRV-fMRI approach to assess cortical control of cardiovagal modulation by motion sickness. Conf Proc IEEE Eng Med Biol Soc 2011:2825–2828. doi:10.​1109/​IEMBS.​2011.​6090781 PubMedCentralPubMed
89.
Kim MS, Chey WD, Owyang C, Hasler WL (1997) Role of plasma vasopressin as a mediator of nausea and gastric slow wave dysrhythmias in motion sickness. Am J Physiol 272(4 Pt 1):G853–G862PubMed
90.
Kobrinsky NL, Pruden PB, Cheang MS, Levitt M, Bishop AJ, Tenenbein M (1988) Increased nausea and vomiting induced by naloxone in patients receiving cancer chemotherapy. Am J Pediatr Hematol Oncol 10(3):206–208PubMedCrossRef
91.
Koch KL (1997) A noxious trio: nausea, gastric dysrhythmias and vasopressin. Neurogastroenterol Motil 9(3):141–142PubMedCrossRef
92.
Kris MG, Gralla RJ, Clark RA, Tyson LB, O’Connell JP, Wertheim MS, Kelsen DP (1985) Incidence, course, and severity of delayed nausea and vomiting following the administration of high-dose cisplatin. J Clin Oncol 3(10):1379–1384PubMed
93.
LaCount LT, Barbieri R, Park K, Kim J, Brown EN, Kuo B, Napadow V (2011) Static and dynamic autonomic response with increasing nausea perception. Aviat Space Environ Med 82(4):424–433PubMedCentralPubMedCrossRef
94.
Ladabaum U, Koshy SS, Woods ML, Hooper FG, Owyang C, Hasler WL (1998) Differential symptomatic and electrogastrographic effects of distal and proximal human gastric distension. Am J Physiol 275(3 Pt 1):G418–G424PubMed
95.
Landas S, Fischer J, Wilkin LD, Mitchell LD, Johnson AK, Turner JW, Theriac M, Moore KC (1985) Demonstration of regional blood-brain barrier permeability in human brain. Neurosci Lett 57(3):251–256PubMedCrossRef
96.
Leslie RA (1986) Comparative aspects of the area postrema: fine-structural considerations help to determine its function. Cell Mol Neurobiol 6(2):95–120PubMedCrossRef
97.
Lindstrom PA, Brizzee KR (1962) Relief of intractable vomiting from surgical lesions in the area postrema. J Neurosurg 19:228–236PubMedCrossRef
98.
Lumsden K, Holden WS (1969) The act of vomiting in man. Gut 10(3):173–179PubMedCentralPubMedCrossRef
99.
Malik NM, Moore GB, Kaur R, Liu YL, Wood SL, Morrow RW, Sanger GJ, Andrews PLR (2008) Adaptive upregulation of gastric and hypothalamic ghrelin receptors and increased plasma ghrelin in a model of cancer chemotherapy-induced dyspepsia. Regul Pept 148(1–3):33–38. doi:10.​1016/​j.​regpep.​2008.​03.​005 PubMedCrossRef
100.
Maolood N, Meister B (2009) Protein components of the blood-brain barrier (BBB) in the brainstem area postrema-nucleus tractus solitarius region. J Chem Neuroanat 37(3):182–195. doi:10.​1016/​j.​jchemneu.​2008.​12.​007 PubMedCrossRef
101.
McWhinney SR, Goldberg RM, McLeod HL (2009) Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther 8(1):10–16. doi:10.​1158/​1535-7163.​MCT-08-0840 PubMedCentralPubMedCrossRef
102.
Miaskiewicz SL, Stricker EM, Verbalis JG (1989) Neurohypophyseal secretion in response to cholecystokinin but not meal-induced gastric distention in humans. J Clin Endocrinol Metab 68(4):837–843. doi:10.​1210/​jcem-68-4-837 PubMedCrossRef
103.
Mihara Y, Egashira N, Sada H, Kawashiri T, Ushio S, Yano T, Ikesue H, Oishi R (2011) Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Mol Pain 7:8. doi:10.​1186/​1744-8069-7-8 PubMedCentralPubMedCrossRef
104.
Miller AD, Rowley HA, Roberts TP, Kucharczyk J (1996) Human cortical activity during vestibular- and drug-induced nausea detected using MSI. Ann N Y Acad Sci 781:670–672PubMedCrossRef
105.
Miller AD, Rowley HA, Roberts TP, Kucharczyke J (1995) Activity of human cewrebral cortex during nausea recovery after ondansetron, as detected by magnetic source imaging. In: Serotonin and the scientific basis of anti-emetic therapy. Oxford Clinical Communications, Oxford, p 252
106.
Miller CM, Wang BH, Moon SJ, Chen E, Wang H (2014) Neurenteric cyst of the area postrema. Case Rep Neurol Med 2014:718415. doi:10.​1155/​2014/​718415 PubMedCentralPubMed
107.
Minami M, Endo T, Hirafuji M, Hamaue N, Liu Y, Hiroshige T, Nemoto M, Saito H, Yoshioka M (2003) Pharmacological aspects of anticancer drug-induced emesis with emphasis on serotonin release and vagal nerve activity. Pharmacol Ther 99(2):149–165PubMedCrossRef
108.
Minami M, Endo T, Yokota H, Ogawa T, Nemoto M, Hamaue N, Hirafuji M, Yoshioka M, Nagahisa A, Andrews PLR (2001) Effects of CP-99, 994, a tachykinin NK(1) receptor antagonist, on abdominal afferent vagal activity in ferrets: evidence for involvement of NK(1) and 5-HT(3) receptors. Eur J Pharmacol 428(2):215–220PubMedCrossRef
109.
Minami M, Ogawa T, Endo T, Hamaue N, Hirafuji M, Yoshioka M, Blower PR, Andrews PLR (1997) Cyclophosphamide increases 5-hydroxytryptamine release from the isolated ileum of the rat. Res Commun Mol Pathol Pharmacol 97(1):13–24PubMed
110.
Miner WD, Sanger GJ (1986) Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism. Br J Pharmacol 88(3):497–499PubMedCentralPubMedCrossRef
111.
Modlin IM, Kidd M, Pfragner R, Eick GN, Champaneria MC (2006) The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91(6):2340–2348. doi:10.​1210/​jc.​2006-0110 PubMedCrossRef
112.
Morrow GR (1984) Susceptibility to motion sickness and chemotherapy-induced side-effects. Lancet 1(8373):390–391PubMedCrossRef
113.
Morrow GR, Andrews PLR, Hickok JT, Stern R (2000) Vagal changes following cancer chemotherapy: implications for the development of nausea. Psychophysiology 37(3):378–384PubMedCrossRef
114.
Morrow GR, Angel C, Dubeshter B (1992) Autonomic changes during cancer chemotherapy induced nausea and emesis. Br J Cancer Suppl 19:S42–S45PubMedCentralPubMed
115.
Morrow GR, Hickok JT, Andrews PLR, Stern RM (2002) Reduction in serum cortisol after platinum based chemotherapy for cancer: a role for the HPA axis in treatment-related nausea? Psychophysiology 39(4):491–495PubMedCrossRef
116.
Morrow GR, Hickok JT, DuBeshter B, Lipshultz SE (1999) Changes in clinical measures of autonomic nervous system function related to cancer chemotherapy-induced nausea. J Auton Nerv Syst 78(1):57–63PubMedCrossRef
117.
Mowrey DB, Clayson DE (1982) Motion sickness, ginger, and psychophysics. Lancet 1(8273):655–657PubMedCrossRef
118.
Mutoh M, Imanishi H, Torii Y, Tamura M, Saito H, Matsuki N (1992) Cisplatin-induced emesis in Suncus murinus. Jpn J Pharmacol 58(3):321–324
119.
Nalivaiko E, Rudd JA, So RHY (2015) Motion sickness, nausea and thermoregulation: the toxic hypothesis. Temperature 1:164–171CrossRef
120.
Napadow V, Sheehan J, Kim J, Dassatti A, Thurler AH, Surjanhata B, Vangel M, Makris N, Schaechter JD, Kuo B (2013) Brain white matter microstructure is associated with susceptibility to motion-induced nausea. Neurogastroenterol Motil 25(5):448–450. doi:10.​1111/​nmo.​12084, e303PubMedCentralPubMedCrossRef
121.
Napadow V, Sheehan JD, Kim J, Lacount LT, Park K, Kaptchuk TJ, Rosen BR, Kuo B (2013) The brain circuitry underlying the temporal evolution of nausea in humans. Cereb Cortex 23(4):806–813. doi:10.​1093/​cercor/​bhs073 PubMedCentralPubMedCrossRef
122.
Nussey SS, Hawthorn J, Page SR, Ang VT, Jenkins JS (1988) Responses of plasma oxytocin and arginine vasopressin to nausea induced by apomorphine and ipecacuanha. Clin Endocrinol (Oxf) 28(3):297–304CrossRef
123.
Oman CM (2012) Are evolutionary hypotheses for motion sickness “just-so” stories? J Vestib Res 22(2):117–127. doi:10.​3233/​VES-2011-0432 PubMed
124.
Page SR, Peterson DB, Crosby SR, Ang VT, White A, Jenkins JS, Nussey SS (1990) The responses of arginine vasopressin and adrenocorticotrophin to nausea induced by ipecacuanha. Clin Endocrinol (Oxf) 33(6):761–770CrossRef
125.
Percie du Sert N, Andrews PLR (2014) The ferret in nausea and vomiting research: lessons in translation of basic science to clinic. In: Biology and diseases of the ferret. Wiley, New Jersey, pp 735–778
126.
Percie du Sert N, Rudd JA, Apfel CC, Andrews PLR (2011) Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT(3) receptor antagonists. Cancer Chemother Pharmacol 67(3):667–686. doi:10.​1007/​s00280-010-1339-4 PubMedCentralPubMedCrossRef
127.
Percie du Sert N, Rudd JA, Moss R, Andrews PLR (2009) The delayed phase of cisplatin-induced emesis is mediated by the area postrema and not the abdominal visceral innervation in the ferret. Neurosci Lett 465(1):16–20. doi:10.​1016/​j.​neulet.​2009.​08.​075, S0304-3940(09)01181-1 [pii]PubMedCrossRef
128.
Perry MR, Rhee J, Smith WL (1994) Plasma levels of peptide YY correlate with cisplatin-induced emesis in dogs. J Pharm Pharmacol 46(7):553–557PubMedCrossRef
129.
Peyrot des Gachons C, Beauchamp GK, Stern RM, Koch KL, Breslin PA (2011) Bitter taste induces nausea. Curr Biol CB 21(7):R247–R248. doi:10.​1016/​j.​cub.​2011.​02.​028 PubMedCrossRef
130.
Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295(7):761–775PubMedCrossRef
131.
Pivot X, Marghali N, Etienne MC, Bensadoun RJ, Thyss A, Otto J, Francois E, Renee N, Lagrange JL, Schneider M, Milano G (2000) A multivariate analysis for predicting cisplatin-induced delayed emesis. Oncol Rep 7(3):515–519PubMed
132.
Popescu BF, Lennon VA, Parisi JE, Howe CL, Weigand SD, Cabrera-Gomez JA, Newell K, Mandler RN, Pittock SJ, Weinshenker BG, Lucchinetti CF (2011) Neuromyelitis optica unique area postrema lesions: nausea, vomiting, and pathogenic implications. Neurology 76(14):1229–1237. doi:10.​1212/​WNL.​0b013e318214332c​ PubMedCentralPubMedCrossRef
133.
Racke K, Reimann A, Schworer H, Kilbinger H (1996) Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res 73(1–2):83–87PubMed
134.
Raghupathi R, Duffield MD, Zelkas L, Meedeniya A, Brookes SJ, Sia TC, Wattchow DA, Spencer NJ, Keating DJ (2013) Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells. J Physiol 591(Pt 23):5959–5975. doi:10.​1113/​jphysiol.​2013.​259796 PubMedCentralPubMedCrossRef
135.
Ratelade J, Bennett JL, Verkman AS (2011) Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS ONE 6(11), e27412. doi:10.​1371/​journal.​pone.​0027412 PubMedCentralPubMedCrossRef
136.
Rojas C, Raje M, Tsukamoto T, Slusher BS (2014) Molecular mechanisms of 5-HT(3) and NK(1) receptor antagonists in prevention of emesis. Eur J Pharmacol 722:26–37. doi:10.​1016/​j.​ejphar.​2013.​08.​049 PubMedCrossRef
137.
Rowe JW, Shelton RL, Helderman JH, Vestal RE, Robertson GL (1979) Influence of the emetic reflex on vasopressin release in man. Kidney Int 16(6):729–735PubMedCrossRef
138.
Rudd JA, Andrews PLR (2004) Mechanisms of acute, delayed and anticipatory vomiting in cancer and cancer treatment. In: Hesketh P (ed) Management of nausea and vomiting in cancer and cancer treatment. Jones and Barlett Publishers, New York, pp 15–66
139.
Rudd JA, Cheng CH, Naylor RJ (1998) Serotonin-independent model of cisplatin-induced emesis in the ferret. Jpn J Pharmacol 78(3):253–260PubMedCrossRef
140.
Rudd JA, Cheng CH, Naylor RJ, Ngan MP, Wai MK (1999) Modulation of emesis by fentanyl and opioid receptor antagonists in Suncus murinus (house musk shrew). Eur J Pharmacol 374(1):77–84
141.
Rudd JA, Ngan MP, Wai MK (1998) 5-HT3 receptors are not involved in conditioned taste aversions induced by 5-hydroxytryptamine, ipecacuanha or cisplatin. Eur J Pharmacol 352(2–3):143–149PubMedCrossRef
142.
Rudd JA, Tse JY, Wai MK (2000) Cisplatin-induced emesis in the cat: effect of granisetron and dexamethasone. Eur J Pharmacol 391(1-2):145–150PubMedCrossRef
143.
Sanger GJ, Broad J, Andrews PLR (2013) The relationship between gastric motility and nausea: gastric prokinetic agents as treatments. Eur J Pharmacol 715(1–3):10–14. doi:10.​1016/​j.​ejphar.​2013.​06.​031 PubMedCrossRef
144.
Schaub N, Ng K, Kuo P, Aziz Q, Sifrim D (2014) Gastric and lower esophageal sphincter pressures during nausea: a study using visual motion-induced nausea and high-resolution manometry. Am J Physiol Gastrointest Liver Physiol 306(9):G741–G747. doi:10.​1152/​ajpgi.​00412.​2013 PubMedCrossRef
145.
Schworer H, Racke K, Kilbinger H (1991) Cisplatin increases the release of 5-hydroxytryptamine (5-HT) from the isolated vascularly perfused small intestine of the guinea-pig: involvement of 5-HT3 receptors. Naunyn Schmiedeberg’s Arch Pharmacol 344(2):143–149CrossRef
146.
Sclocco R, Kinm J, Garcia RG, Sheenan JD, Beissner F, Bianchi AM, Cerutti S, Kuo B, Barbieri R, Napadow V (2014) Brain circuitry supporting multi-organ autonomic outflow in response to nausea. Cerebral Cortex. doi:10.​1093/​cercor/​bhu172
147.
Scott RH, Woods AJ, Lacey MJ, Fernando D, Crawford JH, Andrews PLR (1995) An electrophysiological investigation of the effects of cisplatin and the protective actions of dexamethasone on cultured dorsal root ganglion neurones from neonatal rats. Naunyn Schmiedeberg’s Arch Pharmacol 352(3):247–255CrossRef
148.
Sem-Jacobsen CW (1968) Vegetative changes in response to electrical brain stimulation. Electroencephalogr Clin Neurophysiol 24(1):88PubMed
149.
Shih V, Wan HS, Chan A (2009) Clinical predictors of chemotherapy-induced nausea and vomiting in breast cancer patients receiving adjuvant doxorubicin and cyclophosphamide. Ann Pharmacother 43(3):444–452. doi:10.​1345/​aph.​1L437 PubMedCrossRef
150.
Shinpo K, Hirai Y, Maezawa H, Totsuka Y, Funahashi M (2012) The role of area postrema neurons expressing H-channels in the induction mechanism of nausea and vomiting. Physiol Behav 107(1):98–103. doi:10.​1016/​j.​physbeh.​2012.​06.​002 PubMedCrossRef
151.
Shoji A, Toda M, Suzuki K, Takahashi H, Takahashi K, Yoshiike Y, Ogura T, Watanuki Y, Nishiyama H, Odagiri S (1999) Insufficient effectiveness of 5-hydroxytryptamine-3 receptor antagonists due to oral morphine administration in patients with cisplatin-induced emesis. J Clin Oncol 17(6):1926–1930PubMed
152.
Sipiora ML, Murtaugh MA, Gregoire MB, Duffy VB (2000) Bitter taste perception and severe vomiting in pregnancy. Physiol Behav 69(3):259–267PubMedCrossRef
153.
Soderpalm AH, Schuster A, de Wit H (2001) Antiemetic efficacy of smoked marijuana: subjective and behavioral effects on nausea induced by syrup of ipecac. Pharmacol Biochem Behav 69(3–4):343–350PubMedCrossRef
154.
Stern RM, Koch KL, Andrews PLR (2011) Nausea: mechanisms and management. Oxford University Press, New York
155.
Stott JJR (1986) Mechanisms and treatment of motion illness. In: Davis CB, Lake-Bakaar GV, Grahame-Smith DG (eds) Nausea and vomiting: mechanisms and treatment. Springer, Berlin, pp 110–129CrossRef
156.
Stricker EM, McCann MJ, Flanagan LM, Verbalis JG (1988) Neurohypophyseal secretion and gastric function: biological correlates of nausea. In: Takagi H, Oomura Y, Ito M, Otsuka M (eds) Biowarning system in the brain, a Naito Foundation symposium. University of Tokyo Press, Tokyo
157.
Sugino S, Hayase T, Higuchi M, Saito K, Moriya H, Kumeta Y, Kurosawa N, Namiki A, Janicki PK (2014) Association of mu-opioid receptor gene (OPRM1) haplotypes with postoperative nausea and vomiting. Exp Brain Res 232(8):2627–2635. doi:10.​1007/​s00221-014-3987-9 PubMedCrossRef
158.
Sugino S, Janicki PK (2015) Pharmacogenetics of chemotherapy-induced nausea and vomiting. Pharmacogenomics 16(2):149–160. doi:10.​2217/​pgs.​14.​168 PubMedCrossRef
159.
Takeda N, Hasegawa S, Morita M, Matsunaga T (1993) Pica in rats is analogous to emesis: an animal model in emesis research. Pharmacol Biochem Behav 45(4):817–821PubMedCrossRef
160.
Thomford NR, Sirinek KR (1975) Intravenous vasopressin in patients with portal hypertension: advantages of continuous infusion. J Surg Res 18(2):113–117PubMedCrossRef
161.
Thomson AJ, Williams RJP, Resolva S (1972) The chemistry of complexes related to cis-Pt(II)NH3)Cl2. An anti-tumour drug. Struct Bond (Springer, Berlin) 11:1–46CrossRef
162.
Torii Y, Mutoh M, Saito H, Matsuki N (1993) Involvement of free radicals in cisplatin-induced emesis in Suncus murinus. Eur J Pharmacol 248(2):131–135
163.
Torii Y, Saito H, Matsuki N (1994) Induction of emesis in Suncus murinus by pyrogallol, a generator of free radicals. Br J Pharmacol 111(2):431–434
164.
Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197(4302):493–495PubMedCrossRef
165.
Tremblay PB, Kaiser R, Sezer O, Rosler N, Schelenz C, Possinger K, Roots I, Brockmoller J (2003) Variations in the 5-hydroxytryptamine type 3B receptor gene as predictors of the efficacy of antiemetic treatment in cancer patients. J Clin Oncol 21(11):2147–2155PubMedCrossRef
166.
Tsuji D, Kim YI, Nakamichi H, Daimon T, Suwa K, Iwabe Y, Hayashi H, Inoue K, Yoshida M, Itoh K (2013) Association of ABCB1 polymorphisms with the antiemetic efficacy of granisetron plus dexamethasone in breast cancer patients. Drug Metab Pharmacokinet 28:299–304PubMedCrossRef
167.
Ueno S, Matsuki N, Saito H (1987) Suncus murinus: a new experimental model in emesis research. Life Sci 41(4):513–518
168.
Ullah I, Subhan F, Rudd JA, Rauf K, Alam J, Shahid M, Sewell RD (2014) Attenuation of cisplatin-induced emetogenesis by standardized Bacopa monnieri extracts in the pigeon: behavioral and neurochemical correlations. Planta Med 80(17):1569–1579. doi:10.​1055/​s-0034-1383121 PubMedCrossRef
169.
Vera G, Castillo M, Cabezos PA, Chiarlone A, Martin MI, Gori A, Pasquinelli G, Barbara G, Stanghellini V, Corinaldesi R, De Giorgio R, Abalo R (2011) Enteric neuropathy evoked by repeated cisplatin in the rat. Neurogastroenterol Motil 23(4):370–378. doi:10.​1111/​j.​1365-2982.​2011.​01674.​x, e162–373PubMedCrossRef
170.
Vera G, Lopez-Perez AE, Martinez-Villaluenga M, Cabezos PA, Abalo R (2014) X-ray analysis of the effect of the 5-HT3 receptor antagonist granisetron on gastrointestinal motility in rats repeatedly treated with the antitumoral drug cisplatin. Exp Brain Res 232(8):2601–2612. doi:10.​1007/​s00221-014-3954-5 PubMedCrossRef
171.
Vera Pasamontes G, Uranga JA, Martin Fontelles MI, Abalo R (2012) Histopathology of the severe effects induced by repeated cisplatin in rat tissues. Neurogastroenterol Motil 24(Suppl 2):49
172.
Wafai L, Taher M, Jovanovska V, Bornstein JC, Dass CR, Nurgali K (2013) Effects of oxaliplatin on mouse myenteric neurons and colonic motility. Front Neurosci 7:30. doi:10.​3389/​fnins.​2013.​00030 PubMedCentralPubMedCrossRef
173.
Wang Y, Aggarwal SK, Painter CL (1999) Immunocytochemical and in situ hybridization studies of gastrin after cisplatin treatment. J Histochem Cytochem 47(8):1057–1062PubMedCrossRef
174.
Warr D (2014) Prognostic factors for chemotherapy induced nausea and vomiting. Eur J Pharmacol 722:192–196. doi:10.​1016/​j.​ejphar.​2013.​10.​015 PubMedCrossRef
175.
Wicks D, Wright J, Rayment P, Spiller R (2005) Impact of bitter taste on gastric motility. Eur J Gastroenterol Hepatol 17(9):961–965PubMedCrossRef
176.
Wilder-Smith OH, Borgeat A, Chappuis P, Fathi M, Forni M (1993) Urinary serotonin metabolite excretion during cisplatin chemotherapy. Cancer 72(7):2239–2241PubMedCrossRef
177.
Willis CL, Garwood CJ, Ray DE (2007) A size selective vascular barrier in the rat area postrema formed by perivascular macrophages and the extracellular matrix. Neuroscience 150(2):498–509PubMedCrossRef
178.
Xu LH, Koch KL, Summy-Long J, Stern RM, Seaton JF, Harrison TS, Demers LM, Bingaman S (1993) Hypothalamic and gastric myoelectrical responses during vection-induced nausea in healthy Chinese subjects. Am J Physiol 265(4 Pt 1):E578–E584PubMed
179.
Yu X, Yang J, Hou X, Zhang K, Qian W, Chen JD (2009) Cisplatin-induced gastric dysrhythmia and emesis in dogs and possible role of gastric electrical stimulation. Dig Dis Sci 54(5):922–927. doi:10.​1007/​s10620-008-0470-0 PubMedCrossRef
180.
Zabara J, Chaffee RB Jr, Tansy MF (1972) Neuroinhibition in the regulation of emesis. Space Life Sci 3(3):282–292PubMed
181.
Zoto T, Kilickap S, Yasar U, Celik I, Bozkurt A, Babaoglu MO (2015) Improved anti-emetic efficacy of 5-HT3 receptor antagonists in cancer patients with genetic polymorphisms of ABCB1 (MDR1) drug transporter. Basic Clin Pharmacol Toxicol 116(4):354–360. doi:10.​1111/​bcpt.​12334 PubMedCrossRef
182.
Zueva L, Rivera Y, Kucheryavykh L, Skatchkov SN, Eaton MJ, Sanabria P, Inyushin M (2014) Electron microscopy in rat brain slices reveals rapid accumulation of Cisplatin on ribosomes and other cellular components only in glia. Chemother Res Pract 2014:174039. doi:10.​1155/​2014/​174039 PubMedCentralPubMed