Skip to main content
Top

20-08-2018 | Metastatic melanoma | Article

Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma

Journal: Nature Medicine

Authors: Noam Auslander, Gao Zhang, Joo Sang Lee, Dennie T. Frederick, Benchun Miao, Tabea Moll, Tian Tian, Zhi Wei, Sanna Madan, Ryan J. Sullivan, Genevieve Boland, Keith Flaherty, Meenhard Herlyn, Eytan Ruppin

Publisher: Nature Publishing Group US

Abstract

Immune checkpoint blockade (ICB) therapy provides remarkable clinical gains and has been very successful in treatment of melanoma. However, only a subset of patients with advanced tumors currently benefit from ICB therapies, which at times incur considerable side effects and costs. Constructing predictors of patient response has remained a serious challenge because of the complexity of the immune response and the shortage of large cohorts of ICB-treated patients that include both ‘omics’ and response data. Here we build immuno-predictive score (IMPRES), a predictor of ICB response in melanoma which encompasses 15 pairwise transcriptomics relations between immune checkpoint genes. It is based on two key conjectures: (i) immune mechanisms underlying spontaneous regression in neuroblastoma can predict melanoma response to ICB, and (ii) key immune interactions can be captured via specific pairwise relations of the expression of immune checkpoint genes. IMPRES is validated on nine published datasets16 and on a newly generated dataset with 31 patients treated with anti-PD-1 and 10 with anti-CTLA-4, spanning 297 samples in total. It achieves an overall accuracy of AUC = 0.83, outperforming existing predictors and capturing almost all true responders while misclassifying less than half of the nonresponders. Future studies are warranted to determine the value of the approach presented here in other cancer types.
Literature
1.
Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).CrossRef
2.
Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).CrossRef
3.
Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).CrossRef
4.
Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).CrossRef
5.
Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non–small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).CrossRef
6.
Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e15 (2017).CrossRef
7.
Bramhall, R. J., Mahady, K. & Peach, A. H. S. Spontaneous regression of metastatic melanoma—clinical evidence of the abscopal effect. Eur. J. Surg. Oncol. 40, 34–41 (2014).CrossRef
8.
Kalialis, L. V., Drzewiecki, K. T. & Klyver, H. Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res. 19, 275–282 (2009).CrossRef
9.
Diede, S. J. Spontaneous regression of metastatic cancer: learning from neuroblastoma. Nat. Rev. Cancer 14, 71–72 (2014).CrossRef
10.
Brodeur, G. M. & Bagatell, R. Mechanisms of neuroblastoma regression. Nat. Rev. Clin. Oncol. 11, 704–713 (2014).CrossRef
11.
Cheung, N. K. V. et al. Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J. Clin. Oncol. 5, 1430–1440 (1987).CrossRef
12.
Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).CrossRef
13.
Su, Z. et al. An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol. 15, 523 (2014).CrossRef
14.
Jönsson, G. et al. Gene expression profiling–based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin. Cancer Res. 16, 3356–3367 (2010).CrossRef
15.
Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).CrossRef
16.
Simon, R., Radmacher, M. D., Dobbin, K. & McShane, L. M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst. 95, 14–18 (2003).CrossRef
17.
Tinker, A. V., Boussioutas, A. & Bowtell, D. D. L. The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 9, 333–339 (2006).CrossRef
18.
Ransohoff, D. F. Bias as a threat to the validity of cancer molecular-marker research. Nat. Rev. Cancer 5, 142–149 (2005).CrossRef
19.
Zippelius, A., Schreiner, J., Herzig, P. & Müller, P. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment. Cancer Immunol. Res. 3, 236–244 (2015).CrossRef
20.
Ahrends, T. et al. CD27 agonism plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination. Cancer Res. 76, 2921–2931 (2016).CrossRef
21.
Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).CrossRef
22.
Zhang, Q. & Vignali, D. A. A. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44, 1034–1051 (2016).CrossRef
23.
Fuertes Marraco, S. A., Neubert, N. J., Verdeil, G. & Speiser, D. E. Inhibitory receptors beyond T cell exhaustion. Front. Immunol. 6, 310 (2015).CrossRef
24.
Ramsay, A. G. Immune checkpoint blockade immunotherapy to activate anti-tumour T-cell immunity. Br. J. Haematol. 162, 313–325 (2013).CrossRef
25.
Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).CrossRef
26.
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).CrossRef
27.
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).CrossRef
28.
Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2017).CrossRef
29.
Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).CrossRef
30.
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).CrossRef