Skip to main content
Top

05-10-2017 | Melanoma | Article

Ipilimumab and early signs of pulmonary toxicity in patients with metastastic melanoma: a prospective observational study

Journal: Cancer Immunology, Immunotherapy

Authors: Daniel Franzen, Karin Schad, Benedikt Kowalski, Christian F. Clarenbach, Roger Stupp, Reinhard Dummer, Malcolm Kohler

Publisher: Springer Berlin Heidelberg

Abstract

Ipilimumab, an immune checkpoint inhibitor, is approved for treatment metastastic melanoma and is a promising agent against other malignancies. There is some preliminary evidence from case reports that ipilimumab treatment may be associated with pulmonary side effects. However, data from prospective studies on ipilimumab-related pulmonary toxicity are still scarce. Serial spirometries and measurements of CO-diffusion capacity (DLCO) in patients with metastatic melanoma before and during treatment with ipilimumab were performed. A reduction from baseline of forced vital capacity (FVC) of ≥ 10%, or ≥ 15% of DLCO was defined as clinically meaningful and indicative for pulmonary toxicity. Of 71 patients included in this study, a clinically meaningful lung function decline was registered in 6/65 (9%), 5/44 (11%), and 9/38 (24%) patients after 3, 6, and 9 weeks of treatment initiation, respectively. Even after adjusting for age, concomitant melanoma treatment, progressive pulmonary metastases, and baseline pulmonary function values, mean ± SD DLCO decreased significantly during follow-up (−4.3% ± 13.6% from baseline, p = 0.033). Only 7% of patients reported respiratory symptoms. Clinically manifest ipilimumab-related pneumonitis was diagnosed only in one patient (1.4%). DLCO decline maybe an early indicator of subclinical pulmonary drug toxicity. Therefore, routine pulmonary function testing including DLCO measurement during treatment might help for risk stratification to screen for ipilimumab-related pneumonitis.
Literature
1.
Culver ME, Gatesman ML, Mancl EE, Lowe DK (2011) Ipilimumab: a novel treatment for metastatic melanoma. Ann Pharmacother 45:510–519. doi:10.​1345/​aph.​1P651 CrossRefPubMed
2.
Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.​1056/​NEJMoa1003466 CrossRefPubMedPubMedCentral
3.
Dummer R, Schadendorf D, Ascierto PA, Larkin J, Lebbe C, Hauschild A (2015) Integrating first-line treatment options into clinical practice: what’s new in advanced melanoma? Melanoma Res 25:461–469. doi:10.​1097/​cmr.​0000000000000200​ CrossRefPubMed
4.
Andrews S, Holden R (2012) Characteristics and management of immunerelated adverse effects associated with ipilimumab, a new immunotherapy for metastatic melanoma. Cancer Manag Res 4:299–307. doi:10.​2147/​cmar.​s31873 CrossRefPubMedPubMedCentral
5.
Tirumani SH, Ramaiya NH, Keraliya A, Bailey ND, Ott PA, Hodi FS, Nishino M (2015) Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res 3:1185–1192. doi:10.​1158/​2326-6066.​cir-15-0102 CrossRefPubMedPubMedCentral
6.
Eckert A, Schoeffler A, Dalle S, Phan A, Kiakouama L, Thomas L (2009) Anti-CTLA4 monoclonal antibody induced sarcoidosis in a metastatic melanoma patient. Dermatology 218:69–70. doi:10.​1159/​000161122 CrossRefPubMed
7.
Berthod G, Lazor R, Letovanec I, Romano E, Noirez L, Mazza Stalder J, Speiser DE, Peters S, Michielin O (2012) Pulmonary sarcoid-like granulomatosis induced by ipilimumab. J Clin Oncol 30:e156–e159. doi:10.​1200/​jco.​2011.​39.​3298 CrossRefPubMed
8.
Wilgenhof S, Morlion V, Seghers AC, Du Four S, Vanderlinden E, Hanon S, Vandenbroucke F, Everaert H, Neyns B (2012) Sarcoidosis in a patient with metastatic melanoma sequentially treated with anti-CTLA-4 monoclonal antibody and selective BRAF inhibitor. Anticancer Res 32:1355–1359PubMed
9.
Tissot C, Carsin A, Freymond N, Pacheco Y, Devouassoux G (2013) Sarcoidosis complicating anti-cytotoxic T-lymphocyte-associated antigen-4 monoclonal antibody biotherapy. Eur Respir J 41:246–247. doi:10.​1183/​09031936.​00107912 CrossRefPubMed
10.
Franzen D, Schad K, Dummer R, Russi EW (2013) Severe acute respiratory distress syndrome due to ipilimumab. Eur Respir J 42:866–868. doi:10.​1183/​09031936.​00044113 CrossRefPubMed
11.
Langer CJ (2015) Emerging immunotherapies in the treatment of non-small cell lung cancer (NSCLC): the role of immune checkpoint inhibitors. Am J Clin Oncol 38:422–430. doi:10.​1097/​coc.​0000000000000059​ CrossRefPubMed
12.
Nishino M, Sholl LM, Hodi FS, Hatabu H, Ramaiya NH (2015) Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med 373:288–290. doi:10.​1056/​NEJMc1505197 CrossRefPubMedPubMedCentral
13.
Nishino M, Chambers ES, Chong CR et al (2016) Anti-PD-1 inhibitor-related pneumonitis in non-small cell lung cancer. Cancer Immunol Res 4:289–293. doi:10.​1158/​2326-6066.​cir-15-0267 CrossRefPubMedPubMedCentral
14.
Nishino M, Ramaiya NH, Awad MM et al (2016) PD-1 inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course. Clin Cancer Res 22:6051–6060. doi:10.​1158/​1078-0432.​ccr-16-1320 CrossRefPubMedPubMedCentral
15.
Nishino M, Giobbie-Hurder A, Hatabu H, Ramaiya NH, Hodi FS (2016) Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol 2:1607–1616. doi:10.​1001/​jamaoncol.​2016.​2453 CrossRefPubMed
16.
Hodi FS, Lee S, McDermott DF et al (2014) Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA 312:1744–1753. doi:10.​1001/​jama.​2014.​13943 CrossRefPubMedPubMedCentral
17.
Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338. doi:10.​1183/​09031936.​05.​00034805 CrossRefPubMed
18.
Macintyre N, Crapo RO, Viegi G et al (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26:720–735. doi:10.​1183/​09031936.​05.​00034905 CrossRefPubMed
19.
Franzen D, Ciurea A, Bratton DJ, Clarenbach CF, Latshang TD, Russi EW, Kyburz D, Kohler M (2016) Effect of rituximab on pulmonary function in patients with rheumatoid arthritis. Pulm Pharmacol Ther 37:24–29. doi:10.​1016/​j.​pupt.​2016.​02.​002 CrossRefPubMed
20.
Heigener D, Reck M (2015) Exploring the potential of immuno-oncology-based treatment for patients with non-small cell lung cancer. Expert Rev Anticancer Ther 15:69–83. doi:10.​1586/​14737140.​2015.​957187 CrossRefPubMed
21.
Linardou H, Gogas H (2016) Toxicity management of immunotherapy for patients with metastatic melanoma. Ann Transl Med 4:272. doi:10.​21037/​atm.​2016.​07.​10 CrossRefPubMedPubMedCentral
22.
Abdel-Rahman O, Fouad M (2016) Risk of pneumonitis in cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Ther Adv Respir Dis 10:183–193. doi:10.​1177/​1753465816636557​ CrossRefPubMed
23.
Gounant V, Brosseau S, Naltet C, Opsomer MA, Antoine M, Danel C, Khalil A, Cadranel J, Zalcman G (2016) Nivolumab-induced organizing pneumonitis in a patient with lung sarcomatoid carcinoma. Lung Cancer 99:162–165. doi:10.​1016/​j.​lungcan.​2016.​07.​010 CrossRefPubMed
24.
Fragkou P, Souli M, Theochari M, Kontopoulou C, Loukides S, Koumarianou A (2016) A case of organizing pneumonia (OP) associated with pembrolizumab. Drug Target Insights 10:9–12. doi:10.​4137/​dti.​s31565 CrossRefPubMedPubMedCentral
25.
Crapo RO, Jensen RL, Wanger JS (2001) Single-breath carbon monoxide diffusing capacity. Clin Chest Med 22:637–649CrossRefPubMed
26.
Epler GR, McLoud TC, Gaensler EA, Mikus JP, Carrington CB (1978) Normal chest roentgenograms in chronic diffuse infiltrative lung disease. N Engl J Med 298:934–939. doi:10.​1056/​nejm197804272981​703 CrossRefPubMed
27.
Burton C, Kaczmarski R, Jan-Mohamed R (2003) Interstitial pneumonitis related to rituximab therapy. N Engl J Med 348:2690–2691. doi:10.​1056/​nejm200306263482​619 (discussion-1) CrossRefPubMed
28.
Robert C, Karaszewska B, Schachter J et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39. doi:10.​1056/​NEJMoa1412690 CrossRefPubMed