Skip to main content
Top

05-08-2017 | Lymphoma | Article

Targeting Immune System Alterations in Hodgkin Lymphoma

Journal: Current Hematologic Malignancy Reports

Authors: Natalie S. Grover, Barbara Savoldo

Publisher: Springer US

Abstract

Purpose of Review

This review discusses novel immunotherapeutic approaches to treat Hodgkin lymphoma (HL), specifically PD-1 inhibitors and cellular immunotherapy.

Recent Findings

PD-1 inhibitors have shown promising results in the treatment of relapsed or refractory HL, leading to FDA approval of nivolumab and pembrolizumab, although complete remissions are rare. Chimeric antigen receptor T cells directed against CD30 have been investigated with preliminary clinical trials showing minimal toxicities and some responses in heavily pre-treated patients with HL.

Summary

HL is unique as it consists of a small percentage of malignant cells (Hodgkin Reed Sternberg cells) surrounded by an inflammatory microenvironment which promotes tumor growth and suppresses immune responses, making it an ideal target for immunotherapeutic approaches, such as PD-1 inhibitors and cellular immunotherapy. Current research is focused on overcoming barriers to efficacy via rational combinations that overcome resistance to therapy.
Literature
1.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefPubMed
2.
Glimelius I, Ekberg S, Jerkeman M, Chang ET, Bjorkholm M, Andersson TM, et al. Long-term survival in young and middle-aged Hodgkin lymphoma patients in Sweden 1992-2009—trends in cure proportions by clinical characteristics. Am J Hematol. 2015;90(12):1128–34.CrossRefPubMed
3.
Sarina B, Castagna L, Farina L, Patriarca F, Benedetti F, Carella AM, et al. Allogeneic transplantation improves the overall and progression-free survival of Hodgkin lymphoma patients relapsing after autologous transplantation: a retrospective study based on the time of HLA typing and donor availability. Blood. 2010;115(18):3671–7.CrossRefPubMed
4.
Sud A, Thomsen H, Sundquist K, Houlston RS, Hemminki K. Risk of second cancer in Hodgkin lymphoma survivors and influence of family history. J Clin Oncol. doi:10.​1200/​JCO.​2016.​70.​9709.
5.
Schaapveld M, Aleman BM, van Eggermond AM, Janus CP, Krol AD, van der Maazen RW, et al. Second cancer risk up to 40 years after treatment for Hodgkin’s lymphoma. N Engl J Med. 2015;373(26):2499–511.CrossRefPubMed
6.
van Nimwegen FA, Ntentas G, Darby SC, Schaapveld M, Hauptmann M, Lugtenburg PJ, et al. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines. Blood. 2017;129:2257–65.CrossRefPubMedPubMedCentral
7.
Ng AK, van Leeuwen FE. Hodgkin lymphoma: late effects of treatment and guidelines for surveillance. Semin Hematol. 2016;53(3):209–15.CrossRefPubMed
8.
Bjorkholm M, Svedmyr E, Sjoberg J. How we treat elderly patients with Hodgkin lymphoma. Curr Opin Oncol. 2011;23(5):421–8.CrossRefPubMed
9.
Evens AM, Helenowski I, Ramsdale E, Nabhan C, Karmali R, Hanson B, et al. A retrospective multicenter analysis of elderly Hodgkin lymphoma: outcomes and prognostic factors in the modern era. Blood. 2012;119(3):692–5.CrossRefPubMed
10.
Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A. The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol. 2014;24:15–22.CrossRefPubMed
11.
Harris NL. Hodgkin’s lymphomas: classification, diagnosis, and grading. Semin Hematol. 1999;36(3):220–32.PubMed
12.
Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.CrossRefPubMedPubMedCentral
13.
Glimelius I, Diepstra A. Novel treatment concepts in Hodgkin lymphoma. J Intern Med. 2016;281:247–60.CrossRefPubMed
14.
Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.PubMed
15.
Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2012;30(18):2183–9.CrossRef
16.
Chen R, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2016;128(12):1562–6.CrossRefPubMedPubMedCentral
17.
Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734–44.CrossRefPubMedPubMedCentral
18.
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.CrossRefPubMedPubMedCentral
19.
Jezersek NB. Checkpoint inhibitors in Hodgkin’s lymphoma. Eur J Haematol. 2016;96(4):335–43.CrossRef
20.
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4.CrossRefPubMedPubMedCentral
21.
Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4.CrossRefPubMed
22.
Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol. 2009;40(12):1715–22.CrossRefPubMed
23.
Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.CrossRefPubMedPubMedCentral
24.
Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O'Donnell E, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18(6):1611–8.CrossRef
25.
•• Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9. This is the phase I study of nivolumab that established the safety and efficacy of PD-1 inhibitors in HL. CrossRefPubMed
26.
Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(13):3462–73.CrossRef
27.
Glaser SL, Lin RJ, Stewart SL, Ambinder RF, Jarrett RF, Brousset P, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. International journal of cancer Journal international du cancer. 1997;70(4):375–82.CrossRefPubMed
28.
Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.CrossRefPubMedPubMedCentral
29.
Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375(2):143–53.CrossRefPubMedPubMedCentral
30.
Ansell S, Armand P, Timmerman JM, Shipp MA, Bradley Garelik MB, Zhu L, et al. Nivolumab in patients (Pts) with relapsed or refractory classical Hodgkin lymphoma (R/R cHL): clinical outcomes from extended follow-up of a phase 1 study (CA209-039). Blood. 2015;126(23):583.
31.
•• Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94. This is the pivotal phase 2 study of nivoulmab in patients with cHL which led to its FDA approval. CrossRefPubMed
32.
Timmerman, J. M., Engert, A., Younes, A., Santoro, A., Armand, P., Fanale, M. A., Collins, G. P., Ratanatharathorn, V., Kuruvilla, J., Cohen, J. B., Savage, K. J., Trneny, M., De Boer, J. P., Shipp, M. A., Rodig, S. J., Kato, K., Sumbul, A., and Ansell, S. (2016). Checkmate 205 Update with Minimum 12-Month Follow up: A Phase 2 Study of Nivolumab in Patients with Relapsed/Refractory Classical Hodgkin Lymphoma. Blood, 128(22), 1110. (American Society of Hematology 2016 Meeting).
33.
•• Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with Pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34:3733–9. This article presents results of the phase Ib study of pembrolizumab in patients with cHL who progressed on or after treatment with BV. CrossRef
34.
Armand P, Shipp MA, Ribrag V, Michot J-M, Zinzani PL, Kuruvilla J, et al. Pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: long-term efficacy from the phase 1b keynote-013 study. Am Soc Hematology. 2016;128:1108.
35.
Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.CrossRefPubMed
36.
• Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(23):2690–7. This article presents data on PD-L1/PD-L2 expression in HL and association with prognosis, supporting a rationale for PD-1 inhibition. CrossRef
37.
Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin’s lymphoma. Blood. 2017;129:2471–8.CrossRefPubMed
38.
Armand, P., Zinzani, P. L., Collins, G. P., Cohen, J. B., Halwani, A. S., Carlo-Stella, C., Millenson, M. M., Provencio, M., Domingo Domenech, E., Giulino Roth, L., Castagna, L., Kato, K., Popa McKiver, M., Sumbul, A., Zhu, L., and Santoro, A. (2016). Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) after Treatment with Nivolumab for Relapsed/Refractory Hodgkin Lymphoma. Blood, 128(22), 3502. (American Society of Hematology 2016 Meeting)
39.
• Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–96. This introduces new response criteria when evaluating lymphoma patients on immunotherapy. CrossRefPubMed
40.
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMed
41.
Ansell S, Gutierrez ME, Shipp MA, Gladstone D, Moskowitz A, Borello I, et al. A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128(22):183.
42.
Diefenbach CS, Hong F, David KA, Cohen J, Robertson M, Advani R, et al. A phase I study with an expansion cohort of the combination of ipilimumab and nivolumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: a trial of the ECOG-ACRIN cancer research group (E4412 arms D and E). Blood. 2016;128(22):1106.
43.
Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125(22):3393–400.CrossRefPubMed
44.
• Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17(4):209–22. This is an excellent review on targeting neoantigens in cancer therapy. CrossRefPubMed
45.
Chapman AL, Rickinson AB, Thomas WA, Jarrett RF, Crocker J, Lee SP. Epstein-Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin’s disease patients: implications for a T-cell-based therapy. Cancer Res. 2001;61(16):6219–26.PubMed
46.
Bollard CM, Aguilar L, Straathof KC, Gahn B, Huls MH, Rousseau A, et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin’s disease. J Exp Med. 2004;200(12):1623–33.CrossRefPubMedPubMedCentral
47.
Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G, et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood. 2007;110(8):2838–45.CrossRefPubMedPubMedCentral
48.
• Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2014;32(8):798–808. This article presents promising data on EBV-specific CTLs in lymphoma patients. CrossRef
49.
Leen A, Tzannou I, Bilgi M, Liu H, Vera JF, Gerdemann U, et al. Immunotherapy for lymphoma using T cells targeting multiple tumor associated antigens. Blood. 2015;126(23):186.
50.
Roemer MG, Advani RH, Redd RA, Pinkus GS, Natkunam Y, Ligon AH, et al. Classical Hodgkin lymphoma with reduced beta2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status. Cancer immunology research. 2016;4(11):910–6.CrossRefPubMed
51.
Ramos CA, Heslop HE, Brenner MK. CAR-T cell therapy for lymphoma. Annu Rev Med. 2016;67:165–83.CrossRefPubMed
52.
Schuster SJ, Svoboda J, Dwivedy Nasta S, Porter DL, Chong EA, Landsburg DJ, et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood. 2015;126(23):183.
53.
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefPubMedPubMedCentral
54.
Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Pohl C, et al. An anti-CD30 chimeric receptor that mediates CD3-zeta-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res. 1998;58(6):1116–9.PubMed
55.
Gopal AK, Chen R, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43.CrossRefPubMedPubMedCentral
56.
Fanale MA, Forero-Torres A, Rosenblatt JD, Advani RH, Franklin AR, Kennedy DA, et al. A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18(1):248–55.CrossRef
57.
Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6.CrossRefPubMedPubMedCentral
58.
Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92(5):1549–55.PubMed
59.
Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–6.CrossRefPubMedPubMedCentral
60.
• Wang CM, Wu ZQ, Wang Y, Guo YL, Dai HR, Wang XH, et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016;23:1156–66. This is one of the first published trials of CD30.CAR-T therapy. CrossRef
61.
• Ramos CA, Ballard B, Liu E, Dakhova O, Mei Z, Liu H, et al. Chimeric T cells for therapy of CD30+ Hodgkin and non-Hodgkin lymphomas. Blood. 2015;126(23):185. This is one of the first published trials of CD30.CAR-T therapy.
62.
Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. Accepted to JCI, to be published in September, 2017 issue (embargo until 8/14/17).
63.
Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004;103(5):1755–62.CrossRefPubMed
64.
Barath S, Aleksza M, Keresztes K, Toth J, Sipka S, Szegedi G, et al. Immunoregulatory T cells in the peripheral blood of patients with Hodgkin’s lymphoma. Acta Haematol. 2006;116(3):181–5.CrossRefPubMed
65.
Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33(6):540–9.CrossRef
66.
Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005;26(2):111–7.CrossRefPubMedPubMedCentral
67.
• John LB, Devaud C, Duong CPM, Yong CS, Beavis PA, Haynes NM, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 2013;19(20):5636–46. This article provides pre-clinical support for the synergistic effect of the combination of PD-1 inhibitors and CAR-T cell therapy. CrossRefPubMed
68.
• Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–44. This article provides pre-clinical support for combining PD-1 inhibitors with CAR-T cell therapy and provides insight on overcoming resistance to CAR-T therapy. CrossRefPubMedPubMedCentral
69.
Shannon L. Maude, George E Hucks, Alix Eden Seif, Mala Kiran Talekar, David T. Teachey, Diane Baniewicz, Colleen Callahan, Vanessa Gonzalez, Farzana Nazimuddin, Minnal Gupta, Noelle V. Frey, David L. Porter, Bruce L Levine, Jan J. Melenhorst, Simon F. Lacey, Carl H. June, and Stephan A. Grupp. The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL). Journal of Clinical Oncology 2017 35:15_suppl, 103-103
70.
Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood. 2017;129(8):1039–41.CrossRefPubMedPubMedCentral
71.
van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin's lymphoma. Am J Pathol. 1999;154(6):1685–91.CrossRefPubMedPubMedCentral
72.
Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, et al. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res. 2006;66(11):5716–22.CrossRefPubMed
73.
Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113(25):6392–402.CrossRefPubMedPubMedCentral
74.
von Tresckow B, Morschhauser F, Ribrag V, Topp MS, Chien C, Seetharam S, et al. An open-label, multicenter, phase I/II study of JNJ-40346527, a CSF-1R inhibitor, in patients with relapsed or refractory Hodgkin lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(8):1843–50.CrossRef
75.
Ruella M, Kenderian SS, Shestova O, Chen T, Scholler J, Wasik MA, et al. Novel chimeric antigen receptor T cells for the treatment of Hodgkin lymphoma. Blood. 2014;124(21):806.
76.
Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Feldman MD, et al. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Am Soc Hematology. 2016;128:43.
77.
Fromm JR. Flow cytometric analysis of CD123 is useful for immunophenotyping classical Hodgkin lymphoma. Cytometry B Clin Cytom. 2011;80(2):91–9.CrossRefPubMed
78.
Tasian SK, Ruella M, Shestova O, Li Y, Porter DL, Carroll M, et al. Anti-CD123 chimeric antigen receptor T cells (CART-123) provide a novel myeloablative conditioning regimen that eradicates human acute myeloid leukemia in preclinical models. Blood. 2013;122(21):143.