Skip to main content
Top

14-03-2017 | Lymphoma | Case report | Article

SLL and CLL

Authors: Tanya Siddiqi, Steven T Rosen

A 72-year-old man with a history of diabetes mellitus, hypertension, and hypercholesterolemia self-palpated a left submandibular lump in 2012. Complete blood count (CBC) in his internist’s office showed solitary leukocytosis (white count 22) with predominant lymphocytes for which he was referred to a hematologist. Peripheral blood flow cytometry on 04/11/12 confirmed chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL): abnormal cell population comprising 63% of CD45 positive leukocytes, co-expressing CD5 and CD23 in CD19-positive B cells. CD38 was negative but other prognostic markers were not assessed at that time. The patient was observed regularly for the next 3 years and his white count trend was as follows: 22.8 (4/2012) --> 28.5 (07/2012) --> 32.2 (12/2012) --> 36.5 (02/2013) --> 42 (09/2013) --> 44.9 (01/2014) --> 75.8 (2/2015). His other counts stayed normal until early 2015 when he also developed anemia (hemoglobin [HGB] 10.9) although platelets remained normal at 215. He had been noticing enlargement of his cervical, submandibular, supraclavicular, and axillary lymphadenopathy for several months since 2014 and a positron emission tomography (PET)/computed tomography (CT) scan done in 12/2014 had shown extensive diffuse lymphadenopathy within the neck, chest, abdomen, and pelvis. Maximum standardized uptake value (SUV max) was similar to low baseline activity within the vasculature of the neck and chest. In the abdomen and pelvis, however, there was mild to moderately hypermetabolic adenopathy measuring up to SUV of 4. The largest right neck nodes measured up to 2.3 x 3 cm and left neck nodes measured up to 2.3 x 1.5 cm. His right axillary lymphadenopathy measured up to 5.5 x 2.6 cm and on the left measured up to 4.8 x 3.4 cm. Lymph nodes on the right abdomen and pelvis measured up to 6.7 cm and seemed to have some mass effect with compression on the urinary bladder without symptoms. He underwent a bone marrow biopsy on 02/03/15, which revealed hypercellular marrow (60%) with involvement by CLL (30%); flow cytometry showed CD38 and ZAP-70 positivity; fluorescence in situ hybridization (FISH) analysis showed 13q deletion/monosomy 13; IgVH was unmutated; karyotype was 46XY.

Literature
  1. Muller-Hermlink HK, et al. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours. In Haematopoietic and Lymphoid Tissues. Lyon, France. IARC press, 2001: 95-96.
  2. National Cancer Institute, Surveillance, Epidemiology, and End Results Program (SEER). SEER clinical statistics review, 1975-2009. https://seer.cancer.gov/archive/csr/1975_2009_pops09/. Accessed March 7, 2017.
  3. Brown JR, Neuberg D, Phillips K, et al. Prevalence of familial malignancy in a prospectively screened cohort of patients with lymphoproliferative disorders. Br J Haem. 2008;143:361-368.
  4. Strati P, Shanafelt T. Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood. 2015;126:454-462.
  5. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111: 5446-5456.
  6. Hallek M. Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2015; 90: 447-460.
  7. Lopez-Guerra M, et al. The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells. Leukemia. 2015;29:96-106.
  8. Rossie D. IX. Chronic lymphocytic leukaemia: new genetic markers as prognostic factors. Hematol Oncol. 2014;31:57-59.
  9. [No authors listed]. Chemotherapeutic options in chronic lymphocytic leukemia: a metaanalysis of the randomized trials. CLL Trialists' Collaborative Group. J Natl Cancer Institute. 1999;91:861-868.
  10. Knauf WU, Lissichkov T, Aldaoud A, et al. Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol. 2009;27:4378-4384
  11. Fischer K, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011;29:3559-3566.
  12. Fischer K, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012;30:3209-3216.
  13. Rai KR, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med. 2000;343:1750-1757.
  14. Leporrier M, Chevret S, Cazin B, et al. Randomized comparison of fludarabine, CAP, and ChOP in 938 previously untreated stage B and C chronic lymphocytic leukemia patients. Blood. 2001;98:2319-2325.
  15. Hallek M, Eichhorst BF. Chemotherapy combination treatment regimens with fludarabine in chronic lymphocytic leukemia. Hematol J. 2004;5:S20-S30.
  16. Bosch F, Ferrer A, López-Guillermo A, et al. Fludarabine, cyclophosphamide and mitoxantrone in the treatment of resistant or relapsed chronic lymphocytic leukaemia. Br J Haematol. 2002;119:976-984.
  17. Eichhorst BF, Busch R, Hopfinger G, et al. Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Hematol J. 2006;107:885-891.
  18. Flinn IW, Neuberg DS, Grever MR, et al. Phase III trial of fludarabine plus cyclophosphamide compared with fludarabine for patients with previously untreated chronic lymphocytic leukemia: US Intergroup Trial E2997. J Clin Oncol. 2007; 25: 793-798.
  19. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370:230-239.
  20. Reynolds C, Di Bella N, Lyons RM, et al. A Phase III trial of fludarabine, cyclophosphamide, and rituximab vs. pentostatin, cyclophosphamide, and rituximab in B-cell chronic lymphocytic leukemia. Invest New Drugs. 2012;30:1232-1240.
  21. Robak T, Bloński JZ, Kasznicki M, et al. Cladribine with prednisone versus chlorambucil with prednisone as first-line therapy in chronic lymphocytic leukemia: report of a prospective, randomized, multicenter trial. Blood. 2000; 96:2723-2729.
  22. Montillo M, Tedeschi A, O'Brien S, et al. Phase II study of cladribine and cyclophosphamide in patients with chronic lymphocytic leukemia and prolymphocytic leukemia. Cancer. 2003;97:114-120.
  23. Robak T, Blonski JZ, Gora-Tybor J, et al. Cladribine alone and in combination with cyclophosphamide or cyclophosphamide plus mitoxantrone in the treatment of progressive chronic lymphocytic leukemia: report of a prospective, multicenter, randomized trial of the Polish Adult Leukemia Group (PALG CLL2). Blood. 2006;108: 473-479.
  24. Tam CS, Keating MJ. Selection of rituximab dosage in chronic lymphocytic leukemia: where is the evidence? Leuk Lymphoma. 2013;54:934-939.
  25. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, openlabel, phase 3 trial. Lancet. 2010;376:1164-1174.
  26. Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127:208-215.
  27. Robak T, Dmoszynska A, Solal-Céligny P, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol. 2010;28:1756-1765.
  28. Foon KA, Boyiadzis M, Land SR, et al. Chemoimmunotherapy with low-dose fludarabine and cyclophosphamide and high dose rituximab in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol. 2009;27:498-503.
  29. Eichhorst B, Fink AM, Busch R, et al. Frontline chemoimmunotherapy with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) shows superior efficacy in comparison to bendamustine (B) and rituximab (BR) in previously untreated and physically fit patients (pts) with advanced chronic lymphocytic leukemia (CLL): final analysis of an international, randomized study of the German CLL Study Group (GCLLSG) (CLL10 Study). Blood. 2014;124:19.
  30. Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2010;28:1749-1755.
  31. Hillmen P, Robak T, Janssens A, et al. Ofatumumab + chlorambucil versus chlorambucil alone in patients with untreated chronic lymphocytic leukemia (CLL): results of the Phase III study Complement 1 (OMB110911). Blood. 2013;122:528.
  32. Cartron G, de Guibert S, Dilhuydy MS, et al. Obinutuzumab (GA101) in relapsed/refractory chronic lymphocytic leukemia: final data from the phase 1/2 GAUGUIN study. Blood. 2014;124:2196-2202.
  33. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370:1101-1110.
  34. Osterborg A, Dyer MJ, Bunjes D, et al. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. J Clin Oncol. 1997;15:1567-1574.
  35. Rai KR, Freter CE, Mercier RJ, et al. Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J Clin Oncol. 2002;20:3891-3897.
  36. Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99:3554-3561.
  37. Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25:5616-5623.
  38. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88-94.
  39. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32-42.
  40. O’Brien S, Furman RR, Coutre SE, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15: 48-58.
  41. Siddiqi T, Rosen S. Novel biologic agents for non-Hodgkin lymphoma and chronic lymphocytic leukemia-part 2: adoptive cellular immunotherapy, small-molecule inhibitors, and immunomodulation. Oncology (Williston Park). 2015;29:299-308.
  42. Byrd JC, Brown JR, O'Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213-223.
  43. O’Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17:1409-1418.
  44. Burger JA, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373: 2425-2437.
  45. Flinn IW, Kahl BS, Leonard JP, et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-δ, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood. 2014;123:3406-3413.
  46. Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123:3390-3397.
  47. Furman RR, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997-1007.
  48. Coutre SE, Barrientos JC, Brown JR, et al. Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk Lymphoma. 2015;56:2779-2786.
  49. Lampson BL, Kasar SN, Matos TR, et al. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood. 2016;128:195-203.
  50. O’Brien SM, et al. A phase 2 study of idelalisib plus rituximab in treatment-naïve older patients with chronic lymphocytic leukemia. Blood. 2015;126:2686-2694.
  51. Channan-Khan A, Miller KC, Musial L, et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol. 2006;24:5343-5349.
  52. Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17:768-778.
  53. Sher T, Miller KC, Lawrence D, et al. Efficacy of lenalidomide in patients with chronic lymphocytic leukemia with high-risk cytogenetics. Leuk Lymphoma. 2010;51:85-88.
  54. Ferrajoli A, Lee BN, Schlette EJ, et al. Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood. 2008;111:5291-5297
  55. Badoux XC, Keating MJ, Wen S, et al. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2013;13:584-591.
  56. Porter DL, Levine Bl, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725-733.
  57. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73.
  58. Porter DL. Chimeric antigen receptor modified T cells directed against CD19 (CTL019 cells) have long-term persistence and induce durable responses in relapsed, refractory CLL. Blood. 2013;122:4162.
  59. Jain N. Nivolumab combined with ibrutinib for CLL and Richter transformation: a Phase II trial. Blood. 2016;128:59.