Skip to main content

20-07-2017 | Lung and thoracic tumors | Article

Lung cancer prognostic index: a risk score to predict overall survival after the diagnosis of non-small-cell lung cancer

Marliese Alexander, Rory Wolfe, David Ball, Matthew Conron, Robert G Stirling, Benjamin Solomon, Michael MacManus, Ann Officer, Sameer Karnam, Kate Burbury, Sue M Evans


Introduction: Non-small-cell lung cancer outcomes are poor but heterogeneous, even within stage groups. To improve prognostic precision we aimed to develop and validate a simple prognostic model using patient and disease variables.

Methods: Prospective registry and study data were analysed using Cox proportional hazards regression to derive a prognostic model (hospital 1, n=695), which was subsequently tested (Harrell’s c-statistic for discrimination and Cox–Snell residuals for calibration) in two independent validation cohorts (hospital 2, n=479 and hospital 3, n=284).

Results: The derived Lung Cancer Prognostic Index (LCPI) included stage, histology, mutation status, performance status, weight loss, smoking history, respiratory comorbidity, sex, and age. Two-year overall survival rates according to LCPI in the derivation and two validation cohorts, respectively, were 84, 77, and 68% (LCPI 1: score≤9); 61, 61, and 42% (LCPI 2: score 10–13); 33, 32, and 14%(LCPI 3: score 14–16); 7, 16, and 5% (LCPI 4: score ≥15). Discrimination (c-statistic) was 0.74 for the derivation cohort, 0.72 and 0.71 for the two validation cohorts.

Conclusions: The LCPI contributes additional prognostic information, which may be used to counsel patients, guide trial eligibility or design, or standardise mortality risk for epidemiological analyses.

Br J Cancer 2017; 117: 744–751. doi:10.1038/bjc.2017.232


Please log in to get access to this content

Related topics