We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/tde.10.17

Proteins constitute an increasing proportion of the drugs in development. The barriers to their entry into the blood stream and rapid clearance means that they often have to be injected several times a day, affecting patient compliance. This paper reviews the major technologies enabling the development of injectable sustained-release products and formulation strategies to maintain protein integrity and modify release rates. Whilst many injectable sustained-release products are on the market, these are all delivering small molecular weight drugs and peptides. This is due to the manufacturing processes that denature and degrade the proteins upon encapsulation and release into the body. Formulation strategies are discussed and a number of new technologies reviewed that are able to overcome the issues with conventional manufacturing processes. The reliance of many processes on organic solvents has prevented their application to the development of injectable sustained release protein products. The development of entirely solvent free and aqueous methods of manufacture of these products has meant that numerous sustained-release protein products are close to reaching the market.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • World Health Organisation. Adherence to Long-term Therapies – Evidence for Action. ISBN: 9241545992 (2003).
  • Folkman J, Long DM. The use of silicone rubber as a carrier for prolonged drug therapy. Surg. Res.4,139–142 (1964).
  • Heller J. Patient-friendly bioerodible drug delivery systems. J. Control. Release133,88–89 (2009).
  • Kosobucki BR, Freeman WR, Cheng L. Photographic estimation of the duration of high dose intravitreal triamcinolone in the vitrectomised eye. Br. J. Ophthalmol.90,705–708 (2006).
  • Govardhan C, Khalaf N, Jung CW et al. Novel long acting crystal formulation of human growth hormone. Pharm. Res.22(9),1461–1470 (2005).
  • Kim SJ, Hahn SK, Kim MJ et al. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J. Control. Release104,323–335 (2005).
  • Hahn SK, Kim SJ, Kim MJ, Kim DH. Characterisation and in vivo study of sustained release formulation of human growth hormone using sodium hyaluronate. Pharm. Res.21(8),1374–1381 (2004).
  • Bidlingmaier M, Kim J, Savoy C et al. Comparative pharmacokinetics and pharmacodynamics of a new sustained release growth hormone, LB03002, versus daily GH in adults with GH deficiency. J. Clin. Endo. Met.91(8),2926–2930 (2006).
  • Peter F, Savoy C, Ji HJ et al. Pharmacokinetic and pharmacodynamic profile of a new sustained release GH formulation, LB03002, in children with GH deficiency. Eur. J. Endo.160,349–355 (2009).
  • 10  Chang TMS. Semipermeable microcapsules. Science146 (3643),524–525 (1964).
  • 11  Chang TMS, Poznansky MJ. Semipermeable microcapsules containing catalase for enzyme replacement in acatalasaemic mice. Nature218,243–245 (1968).
  • 12  Folkman J, Langer R. Polymers for the sustained release of proteins and other macromolecules. Nature263,797–800 (1976).
  • 13  Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Delivery Rev.28,5–24 (1997).
  • 14  Blasi P, D’Souza SS, Selmin F, DeLuca PP. Plasticizing effect of water on poly(lactide-co-glycolide). J. Control. Release108,1–9 (2005).
  • 15  Tracey MA, Ward KL, Firouzabadian L et al. Factors affecting the degradation rate of PLGA microspheres in vivo and in vitro. Biomaterials20,1057–1062 (1999).
  • 16  Passerini N, Craig DQM. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated DSC. J. Control. Release73,111–115 (2001).
  • 17  Wang J, Wang BM, Shwendeman SP. Characterisation of the initial burst release of a model peptide from poly(d,l-lactide-co-glycolide) microspheres. J. Control. Release82,289–307 (2002).
  • 18  Fu K, Pack DW, Klibanov AM, Langer R. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res.17(1),100–106 (2000).
  • 19  Ding AG, Schwendeman SP. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm. Res.25(9),2041–2052 (2008).
  • 20  Li L, Schwendeman SP. Mapping microclimate pH in PLGA microspheres. J. Control. Release101,163–173 (2005).
  • 21  Ding AG, Shenderova A, Schwendeman SP. Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. J. Am. Chem. Soc.128,5384–5390 (2006).
  • 22  Klose D, Siepmann F, Elkharraz K, Siepmann J. PLGA-based drug delivery systems – importance of the type of drug and device geometry. Int. J. Pharm.354(1–2),95–103 (2008).
  • 23  Miller RA, Brady JM, Cutright DE. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J. Biomed. Mater. Res.11,711–719 (1977).
  • 24  Dunne M, Corrigan OI, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glucolide particles. Biomaterials21,1659–1668 (2000).
  • 25  Perez-Marrero R, Tyler RC. A subcutaneous delivery system for the extended release of leuprolide acetate for the treatment of prostate cancer. Expert Opin. Pharmacother.5(2),447–457 (2004).
  • 26  Brodbeck KJ, Pushpala S, McHugh AJ. Sustained release of human growth hormone from PLGA solution depots. Pharm. Res.16(12),1825–1829 (1999).
  • 27  Shah NH, Railkar AS, Chen FC et al. A biodegradable injectable implant for delivering micro and macromolecules using PLGA copolymers. J. Control. Release27,391–147 (1993).
  • 28  Graham PD, Brodbeck KJ, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. J. Control. Release58,233–245 (1999).
  • 29  Brodbeck KJ, DesNoyer JR, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery – Part II the role f solution thermodynamics and batch-side mass transfer. J. Control. Release62,333–344 (1999).
  • 30  Dunn RL, Tipton AJ, Menardi EM. A biodegradable in-situ forming drug delivery system. Proc. Intern. Symp. Control. Release Bioact. Mater.18,456–466 (1991).
  • 31  Schoenhammer K, Petersen H, Guethlein F, Goepferich A. Injectable in situ forming depot systems: PEG-DAE as a novel solvent for improved PLGA storage stability. Int. J. Pharm.371,33–39 (2009).
  • 32  Schoenhammer K, Petersen H, Guethlein F, Goepferich A. Poly(ethylene glycol)500 dimethylether as a novel solvent for injectable in situ forming depots. Pharm. Res.26(12),2568–2577 (2009).
  • 33  Shively ML, Coonts BA, Renner WD, Southard SL, Bennett AT. Physicochemical characterisation of a polymeric injectable implant delivery system. J. Control. Release33,237–243 (1995).
  • 34  Astaneh R, Erfan M, Moghimi H, Mobedi H. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behaviour. J. Pharm. Sci.98(1),135–145 (2009).
  • 35  Astaneh R, Nafissi-Varcheh N, Erfan M. Zinc–leuprolide complex: preparation, physicochemical characterisation and release behaviour from in situ forming implant. J. Peptide Sci.13,649–654 (2007).
  • 36  Ravivarapu HB, Moyer KL, Dunn RL. Parameters affecting the efficacy of a sustained release polymeric implant of leuprolide. Int. J. Pharm.194,181–191 (2000).
  • 37  Jain RA, Rhodes CT, Railkar AM et al. Controlled release of drugs from a novel injectable in situ formed biodegradable PLGA microsphere system. Pharm. Sci.1(Suppl. 1),S298 (1998).
  • 38  Luan X, Bodmeier R. Influence of the PLGA type on the leuprolide release from in situ forming microparticle systems. J. Control. Release110,266–272 (2006).
  • 39  Luan X, Bodmeier R. In situ forming microparticle system for drug delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur. J. Pharm. Sci.27,143–149 (2006).
  • 40  Kranz H, Bodmeier R. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int. J. Pharm.332,107–114 (2007).
  • 41  Okumu F, Dao LN, Fielder PJ et al. Sustained delivery of human growth hormone from a novel gel system: SABER™. Biomaterials23,4353–4358 (2002).
  • 42  Pechenov S, Shenoy B, Yang MX, Basu SK, Margolin AL. Injectable controlled release formulations incorporating protein crystals. J. Control. Release96,149–158 (2004).
  • 43  Tae G, Kornfield JA, Hubbell JA. Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol). Biomaterials26,5259–5266 (2005).
  • 44  Ruiz-Hornillos J, Henriquez-Santana A, Moreno-Fernandez A et al. Systemic allergic dermatitis caused by the solvent of Eligard. Contact Dermatitis61(6),355–356 (2009).
  • 45  Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block co-polymers as injectable drug delivery systems. Nature388,860–862 (1997).
  • 46  Zentner GM, Rathi R, Shih C et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release72,203–215 (2001).
  • 47  Chen S, Singh J. Controlled release of growth hormone from thermosensitive triblock copolymer systems: in vitro and in vivo evaluation. Int. J. Pharm.352,58–65 (2008).
  • 48  Katakam M, Ravis WR, Banga AK. Controlled release of human growth hormone in rats following parenteral administration of poloxamers gels. J. Control. Release49,21–26 (1997).
  • 49  Katakam M, Ravis WR, Golden DL, Banga AK. Controlled release of human growth hormone following subcutaneous administration in dogs. Int. J. Pharm.152,53–58 (1997).
  • 50  Chen PC, Park YJ, Chang LC et al. Injectable microparticle-gel system for prolonged and localised lidocaine release. I. In vitro characterization. J. Biomed. Mater. Res.70(3),412–419. (2004).
  • 51  Chen PC, Kohane DS, Park YJ et al. Injectable microparticle-gel system for prolonged and localised lidocaine release. II. In vivo anesthetic effects. J. Biomed. Mater. Res.70A,459–466 (2004).
  • 52  Ricci EJ, Bentley MVLB, Farah M, Bretas RES, Marchettis JM. Rheological characterisation of poloxamers 407 lidocaine hydrochloride gels. Eur. J. Pharm. Sci.17,161–167 (2002).
  • 53  Ricci EJ, Lunardi LO, Nanclares DMA, Marchetti JM. Sustained release of lidocaine from poloxamers gels. Int. J. Pharm.288,235–244 (2005).
  • 54  Zhang L, Parsons DL, Navarre C, Kompella UB. Development and in vitro evaluation of sustained release poloxamers 407 gel formulations of ceftiofur. J. Control. Release85,73–81 (2002).
  • 55  Johnston TP, Punjabi MA, Froelich CJ. Sustained delivery of interleukin-2 from a poloxamers 407 gel matrix following intraperitoneal injection in mice. Pharm. Res.9(3),425–434 (1992).
  • 56  Katakam M, Banga AK. Use of poloxamers polymers to stabilise recombinant human growth hormone against various processing stresses. Pharm. Dev. Tech.2(2),143–149 (1997).
  • 57  Jiang Z, You Y, Deng XM, Hao JY. Injectable hydrogels of poly(ε-caprolactone-co-glycolide)-co-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolide) triblock copolymer aqueous solutions. Polymer48,4786–4792 (2007).
  • 58  Van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res.17(10),1159–1167 (2000).▪ Excellent review on protein instability in poly(lactide-co-glycolide) (PLGA) microparticles: on encapsulation, release and storage.
  • 59  Jiang Z, Hao J, You Y, Qun G, Cao W, Deng X. Biodegradable thermogelling hydrogel of P(CL-GL)-PEG-P(CL-GL) triblock copolymer: degradation and drug release behaviour. J. Pharm. Sci.98(8) 2603–2610 (2009).
  • 60  Jain RA. The manufacturing technologies of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials21,2475–2490 (2000).
  • 61  Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release102,313–332 (2005).
  • 62  O’Donnell PB, McGinty JW. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Delivery Rev.28,25–42 (1997).
  • 63  Sukumar M, Storms SM, De Felippis MR. Non-native intermediate conformational states of human growth hormone in the presence of organic solvents. Pharm. Res.22(5),789–796 (2005).
  • 64  Sah H. Protein behaviour at the water/methylene chloride interface. J Pharm. Sci., 88(12),1320–1325 (1999).
  • 65  Cleland JL, Jones AJS. Stable formulations of recombinant human growth hormone and interferon- γ for microencapsulation in biodegradable microspheres. Pharm. Res.13(10),1464–1475 (1996).
  • 66  Castellanos IJ, Cruz G, Crespo R, Greibenow K. Encapsulation induced aggregation and loss in activity of γ-chymotrypsin and their prevention. J. Control. Release81,307–319 (2002).▪ Use of Fourier transform infrared to probe protein structure and demonstrate the ability of polyethylene glycol to stabilize proteins during encapsulation.
  • 67  Kim HK, Park TG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotech. Bioeng.65(6) 659–667 (1999).
  • 68  Perez C, Griebenow K. Effects of salts on lysozyme stability at the water-oil interface and upon encapsulation in PLGA microspheres. Biotech. Bioeng.82(7) 825–832 (2003).
  • 69  Perez C, Griebenow K. Improved activity and stability of lysozyme at the water/CH2Cl2 interface: enzyme unfolding and aggregation and its prevention by polyols. J. Pharm. Pharmacol.53,1217–1226 (2001).
  • 70  Van de Weert M, Hoechstetter J, Hennink WE, Crommelin DJA. The effect of a water/organic solvent interface on the structural stability of lysozyme. J. Control. Release68,351–359 (2000).
  • 71  Carrasquillo KG, Carro JCA, Alejandro A, Toro DD, Greibenow K. Reduction of structural perturbations in bovine serum albumin by non-aqueous microencapsulation. J. Pharm. Pharmacol.53,115–120 (2001).
  • 72  Pérez C, De Jesus P, Griebenow K. Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. Int. J. Pharm.248,193–206 (2002).
  • 73  Cleland JL, Mac A, Boyd B et al. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) PLGA microspheres. Pharm. Res.14(4) 420–425 (1997).
  • 74  Cleland JL, Duenas E, Daugherty A et al. Recombinant human growth hormone poly(lactic-co-glycolic acid) (PLGA) microspheres provide a long lasting effect. J. Control. Release49,193–205 (1997).
  • 75  Cleland JL, Johnson O, Putney S, Jones AJS. Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Adv. Drug Delivery Rev.28,71–84 (1997).▪ Informative review of the development of the only injectable sustained-release protein formulation to reach the market: Nutropin Depot™.
  • 76  Kwak HH, Shim WS, Choi MK et al. Development of a sustained release recombinant human growth hormone formulation. J. Control. Release137,160–165 (2009).
  • 77  Castellanos IJ, Flores G, Griebenow K. Effect of cyclodextrins on α-chymotrypsin stability and loading in PLGA microspheres upon s/o/w emulsion. J. Pharm. Sci.95(4) 849–858 (2006).
  • 78  Quaglia F, De Rosa G, Granata E et al. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray drying. J. Control. Release86,267–278 (2003).
  • 79  De Rosa G, Larobina D, La Rotonda MI et al. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-β-cyclodextrin. J. Control. Release102,71–83 (2005).
  • 80  Bezemer JM, Radersma R, Grijpma DW et al. Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylenes terephthalate matrices. J. Control. Release64,179–192 (2000).
  • 81  Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, van Blitterswijk CA, Feijen J. Microspheres for protein delivery prepared from amphiphilic multibock copolymers 1 influence of preparation techniques on particle characteristics and protein delivery. J. Control. Release67,233–248 (2000).
  • 82  Van Dijkhuizen-Radersma R, Nicolas HM, van de Weert M et al.Stability aspects of salmon calcitonin entrapped in poly(ether ester) sustained release systems, Int. J. Pharm.248,229–237 (2002).
  • 83  Griebenow K, Kilbanov AM. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc.118(47),11695–11700 (1996).
  • 84  Carrasquillo KG, Stabley AM, Aponte-Carro JC et al. Non-aqueous encapsulation of excipient-stabilised spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein. J. Control. Release76,199–208 (2001).
  • 85  Petit DK, Lawter JR, Huang WJ et al.Characterisation of poly(glycolide-co-d,l-lactide)/poly(D,L-lactide) microspheres for controlled release of GM-CSF. Pharm. Res.14(10),1422–1430 (1997).
  • 86  Constantino HR, Johnson OL, Zale SE. Relationship between encapsulated drug particle size and initial release of recombinant human growth hormone from biodegradable microspheres. J. Pharm Sci.93(10),2624–2634 (2004).
  • 87  Takada S, Yamagata Y, Misaki M, Taira K, Kurokawa T. Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique. J. Control. Release88,229–242 (2003).
  • 88  Castellanos IJ, Carrasquillo KG, Lopez JDJ, Alvarez M, Griebenow K. Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique. J. Pharm. Pharmacol.53,167–178 (2001).
  • 89  Wang J, Chua KM, Wang CH. Stabilisation and encapsulation of human immunoglobulin G into biodegradable microspheres. J. Col. Inter. Sci.271,92–101 (2004).
  • 90  Kim TK, Burgess DJ. Pharmacokinetic characterisation of 14C-vascular endothelial growth factor controlled release microspheres using a rat model. J. Pharm. Pharmacol.54,897–905 (2002).
  • 91  Zhu G, Mallery SR, Schwendeman SP. Stabilisation of proteins encapsulated in injectable poly(lactide-co-glycolide). Nature Biotech.18,52–57 (2000).▪ Demonstration of the ability of inorganic bases to counter the pH drop inside PLGA and poly(lactic acid) drug delivery systems as they degrade and prevent protein degradation.
  • 92  Kang J, Schwendeman SP. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide) implants. Biomaterials23,239–245 (2002).
  • 93  Castellanos IJ, Crespo R, Griebenow K. Poly(ethylene glycol) as stabiliser and emulsifying agent: a novel stabilisation approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J. Control. Release88,135–145 (2003).
  • 94  Castellanos IJ, Griebenow K. Improved α-chymotrypsin stability upon encapsulation in PLGA microspheres by solvent replacement. Pharm. Res.20(11),1873–1880 (2003).
  • 95  Morita T, Sakamura Y, Horikiri Y, Suzuki T, Yoshino H. Protein encapsulation into biodegradable microspheres by a novel s/o/w emulsion method using poly(ethylene glycol) as a protein micronisation adjuvant. J. Control. Release69,435–444 (2000).
  • 96  Morita T, Horikiri Y, Suzuki T, Yoshino H. Applicability of various amphiphilic polymers to the modification of protein release kinetics from biodegradable reservoir-type microspheres. Eu. J. Pharm. Biopharm.51,45–53 (2001).
  • 97  Takada S, Yamagata Y, Misaki M, Taira K, Kurokawa T. Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique. J. Control. Release88,229–242 (2003).
  • 98  Takada S, Kurokawa T, Misaki M, Taira K, Yamagata Y. A new animal model for the evaluation of long-term growth rate over one month by rhGH/PLGA microcapsule formulations. J. Pharm. Pharmacol.55,951–961 (2003).
  • 99  Takenaga M, Yamaguchi Y, Kitagawa A, Ogawa Y, Mizushima Y, Igarashi R. A novel sustained release formulation of insulin with dramatic reduction in rapid release. J. Control. Release79,81–91 (2002).
  • 100  Yamaguchi Y, Takenaga M, Kitagawa A, Ogawa Y, Mizushima Y, Igarashi R. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives. J. Control. Release81,235–249 (2002).
  • 101  Takenaga M, Yamaguchi Y, Kitagawa A et al. Optimum formulation for sustained release insulin. Int. J. Pharm.271,85–94 (2004).
  • 102  Takenaga M, Yamaguchi Y, Kitagawa A, Ogawa Y, Mizushima Y, Igarashi R. A novel insulin formulation can keep providing steady levels of insulin for much longer periods in vivo. J. Pharm. Pharmacol.54,1189–1194 (2002).
  • 103  Tracy MA. Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog.14,108–115 (1998).▪ Unique insight into the industrial scale-up and development of an injectable sustained-release formulation made using a novel encapsulation technology.
  • 104  Johnson OL, Cleland JL, Lee HJ et al. A month-long effect from a single injection of microencapsulated human growth hormone. Nature Med.2,795–799 (1996).
  • 105  Johnson OL, Jaworowicz W, Cleland JL et al. The stabilisation and encapsulation of human growth hormone into biodegradable microspheres. Pharm. Res.14(6),730–735 (1997).
  • 106  Lee HJ, Riley G, Johnson O et al.In vivo characterisation of sustained release formulations of human growth hormone. J. Pharmacol. Exp. Thera.281(3),1431–1439 (1997).
  • 107  Reiter EO, Attie KM, Moshang T et al. A multicenter study of the efficacy and safety of sustained release GH in the treatment of naive pediatric patients with GH deficiency. J. Clin. Endo. Met.86(10),4700–4706 (2001).
  • 108  Kemp SF, Fielder PJ, Attie KM et al. Pharmacokinetic and pharmacodynamic characteristics of a long acting growth hormone (GH) preparation (Nutropin® Depot) in GH-deficient children. J. Clin. Endo. Met.89(7),3234–3240 (2004).
  • 109  Howdle SM, Watson MS, Whitaker MJ et al. Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials. Chem. Commun.2001,109–110 (2001).
  • 110  Watson MS, Whitaker MJ, Howdle SM, Shakesheff KM. Incorporation of proteins into polymer materials by a novel supercritical fluid processing method. Adv. Mater.14(24),1802–1804 (2002).
  • 111  Hao J, Whitaker MJ, Wong B, Serhatkulu G, Shakesheff KM, Howdle SM. Plasticization and spraying of poly(D,L-lactic acid) using supercritical carbon dioxide: control of particle size. J. Pharm. Sci.93(4),1083–1090 (2004).
  • 112  Hao J, Whitaker MJ, Wong B, Serhatkulu G, Shakesheff KM, Howdle SM. Supercritical fluid assisted melting of poly(ethylene glycol): a new solvent-free route to microparticles. J. Mater. Chem.15,1148–1153 (2005).
  • 113  Whitaker MJ, Hao J, Davies OR et al. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J. Control. Release101,85–92 (2005).
  • 114  Jordan F, Naylor A, Kelly CA, Howdle SM, Lewis A, Illum L. Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J. Control. Release141,153–160 (2010).
  • 115  Reslow M, Jonsson M, Laakso T. Sustained release of human growth hormone from PLG-coated starch microspheres. Drug Del. Sys. Sci.2,103–109 (2002).
  • 116  Jostel A, Mukherjee A, Alenfall J, Smethurst L, Shalet AM. A new sustained release preparation of human growth hormone and its pharmacokinetic, pharmacodynamic and safety profile. Clin. Endo.62,623–627 (2005).
  • 117  Stenekes RJH, Franssen O, van Brommel EMG, Crommelin DJA, Hennink WE. The preparation of dextran microspheres in an all-aqueous system: effect of formulation parameters on particle characteristics. Pharm. Res.15(4),557–561 (1998).
  • 118  Franssen O, Vandervennet L, Roders P, Hennink WE. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. J. Control. Release60,211–221 (1999).
  • 119  Vlugt-Wensink KDF, Meijer YJ, van Steenbergen MJ et al.Effect of excipients on the encapsulation efficiency and release of human growth hormone from dextran microspheres. Eur. J. Pharm. Biopharm.67,589–596 (2007).
  • 120  Vlugt-Wensink KDF, de Vreuh R, Gresnigt MG et al. Preclinical and clinical in vitro in vivo correlation of an hGH dextran microsphere formulation. Pharm. Res.24(12),2239–2248 (2007).
  • 121  Moore WV, Leppert P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endo. Met.51(4),691–697 (1980).
  • 122  Woo BH, Jiang G, Jo YW, DeLuca PP. Preparation and characterisation of a composite PLGA and poly(acryloyl hydroxyethyl starch) microsphere system for protein delivery. Pharm. Res.18(11),1600–1606 (2001).
  • 123  Capan Y, Jiang G, Giovagnoli S, Na KH, DeLuca PP. Preparation and characterisation of poly(D,L-lactide-co-glycolide) microspheres for controlled release of human growth hormone. AAPS PharmSciTech4(2) 1–10 (2003).
  • 124  Jiang G, Qiu W, DeLuca PP. Preparation and in vitro-in vivo evaluation of insulin loaded poly(acryloyl hydroxyethyl starch)-PLGA composite microspheres. Pharm. Res.20(3),452–459 (2003).
  • 125  Schoubben A, Blasi P, Giovagnoli S, Perioli L, Rossi C, Ricci M. Novel composite microparticles for protein stabilisation and delivery. Eur. J. Pharm. Sci.36,226–234 (2009).
  • 126  Johansen P, Tamber H, Merkle P, Gander B. Diphtheria and tetanus toxoid microencapsulation into conventional and end-group alhylated PLA/PLGAs. Eu. J. Pharm. Biopharm.47,193–201 (1999).
  • 127  Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PLGA implants. J. Biomed. Mater. Res.38,105–114 (1997).
  • 128  Shao PG, Bailey LC. Stabilisation of pH-induced degradation of porcine insulin in biodegradable polyester microspheres. Pharm. Dev. Technol.4,633–642 (1999).
  • 129  Kim HK, Park TG. Comparative study on sustained release of human growth hormone from semi-crystalline poly(L-lactic acid) and amorphous poly(D,L-lactic-co-glycolic acid) microspheres: morphological effect on protein release. J. Control. Release98,115–125 (2004).
  • 130  Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with open/closed pores for sustained release of human growth hormone. J. Control. Release112,167–174 (2006).
  • 131  Bae SE, Son JS, Park K, Han DK. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J. Control. Release133,37–43 (2009).
  • 132  Lucke A, Kiermaier J, Gopferich A. Peptide acylation by poly(α-hydroxy esters). Pharm. Res.19(2),175–181 (2002).
  • 133  Murty SB, Goodman J, Thanoo BC, DeLuca PP. Identification of chemically modified peptide from poly(lactide-co-glycolide) microspheres under in vitro release conditions. AAPS PharmSciTech4(4),E50 (2003).
  • 134  Murty SB, Thanoo BC, Wei Q, DeLuca PP Impurity formation studies with peptide loaded polymeric microspheres Part I. In vivo evaluation. Int. J. Pharm.297,50–61 (2005).
  • 135  Murty SB, Dong HN, Thanoo BC, DeLuca PP. Impurity formation studies with peptide loaded polymeric microspheres Part II. In vitro evaluation. Int. J. Pharm.297,62–72 (2005).
  • 136  Ibrahim MA, Ismail A, Fetouch MI, Gopferich A. Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres. J. Control. Release106,241–252 (2005).
  • 137  Lam XM, Duenas ET, Cleland JL. Encapsulation and stabilisation of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J. Pharm. Sci.90(9),1356–1365 (2001).
  • 138  Tsai T, Mehta RC, DeLuca PP. Adsorption of peptides to poly(D,L-lactide-co-glycolide):1 effect of physical factors. Int. J. Pharm.127,31–42 (1996).
  • 139  Tsai T, Mehta RC, DeLuca PP. Adsorption of peptides to poly(D,L-lactide-co-glycolide):2 effect of solution properties on the adsorption. Int. J. Pharm.127,43–52 (1996).
  • 140  Calis S, Jeyanthi R, Tsai T, Mehta RC, DeLuca PP. Adsorption of salmon calcitonin to PLGA microspheres. Pharm. Res.12(7),1072–1076 (1995).
  • 141  Mehta RC, Jeyanthi R, Calis S, Thanoo BC, Burton KW, DeLuca PP. Biodegradable microspheres as depot system for parenteral delivery of peptide drugs. J. Control. Release29,375–384 (1994).
  • 142  Jiang G, Woo BH, Kang F, Singh J, DeLuca PP. Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres. J. Control. Release79,137–145 (2002).
  • 143  Jiang W, Schwendeman SP. Stabilisation and controlled release of bovine serum albumin encapsulated in poly(D,L lactide) and poly(ethylene glycol) microsphere blends. Pharm. Res.18(6),878–885 (2001).
  • 144  Diaz RV, Soriano I, Delgado A, Llabres M, Evora C. Effect of surfactant agents on the release of 125I-bovine calcitonin from PLGA microspheres: in vitro–in vivo study. J. Control. Release43,59–64 (1997).
  • 145  De Rosa G, Iommelli R, La Rotonda MI, Miro A, Quaglia F. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres. J. Control. Release69,283–295 (2000).
  • 146  Chan YP, Meyrueix R, Kravtzoff R, Nicolas F, Lundstrom K. Review on Medusa®: a polymer-based sustained release technology for protein and peptide drugs. Expert Opin. Drug Del.4(4),441–451 (2007).
  • 201  Eligard prescribing information http://products.sanofi-aventis.us/eligard/eligard_75.html
  • 202  OctoPlus press release, June 2009 http://observer.OctoPlus.nl/index.cfm/OctoPlus/news-centre/news-releases/index.cfm?news-article=OctoPlus-licensee-biolex-completes-patient-enrollment-in-phase-iib-study-with-locteron
  • 203  Genentech press release, 1 June 2004 www.gene.com/gene/news/press-releases/display.do?method=detail&id=7447
  • 204  Flamel Technologies press release, 18 December 2009 www.flamel.com/pressReleases/2009.shtml