Skip to main content

Advertisement

Log in

Physical Activity Before and After Diagnosis of Colorectal Cancer

Disease Risk, Clinical Outcomes, Response Pathways and Biomarkers

  • Review Article
  • Colorectal Cancer and Physical Activity
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Physical inactivity may be responsible for 13–14% of colon cancer, an attributable risk greater than family history. Epidemiological evidence shows an association between occupational and recreational physical activity and colon cancer, but has not established whether physical activity is protective against low-risk or more advanced adenomas. The evidence is inconclusive as to whether physical activity protects against rectal cancer and is conflicting with respect to whether physical activity has equal effects on male and female risk of colorectal cancer. The effect of exercise ‘interventions’ on the risk of colorectal cancer is currently not known. Also, although inferences can be made from epidemiological studies, no optimal exercise regimen can be confidently prescribed for protection against colorectal cancer. There is little available evidence for the benefits of physical activity before diagnosis of colorectal cancer for disease-specific survival and prognosis, and the clinical effects of an exercise intervention after diagnosis have not been investigated. There is some evidence that improvements in cardiorespiratory fitness reduce adverse effects from cancer treatment when physical activity is undertaken following diagnosis of colorectal cancer. Markers/mechanisms by which physical activity may protect against colorectal cancer and/or improve disease prognosis include gastrointestinal transit-time, chronic inflammation, immune function, insulin levels, insulin-like growth factors, genetics and obesity. Research evidence is, however, limited as to whether these markers are beneficially affected by physical activity, either before or after diagnosis of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55 (2): 74–108

    Article  PubMed  Google Scholar 

  2. Flood DM, Weiss NS, Cook LS, et al. Colorectal cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control 2000; 11 (5): 403–11

    Article  CAS  PubMed  Google Scholar 

  3. Boyle P, Langman JS. ABC of colorectal cancer: epidemiology. BMJ 2000; 321 (7264): 805–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slattery ML. Physical activity and colorectal cancer. Sports Med 2004; 34 (4): 239–52

    Article  PubMed  Google Scholar 

  5. Slattery ML, Levin TR, Ma K, et al. Family history and colorectal cancer: predictors of risk. Cancer Causes Control 2003; 14 (9): 879–87

    Article  CAS  PubMed  Google Scholar 

  6. Blair SN, Jacobs DR, Powell KE. Relationships between exercise or physical activity and other health behaviors. Public Health Rep 1985; 100 (2): 172–80

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Friedenreich CM, Orenstein MR. Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 2002; 132 (11): 3456S–64S

    CAS  PubMed  Google Scholar 

  8. Samad AKA, Taylor RS, Marshall T, et al. A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. Colorectal Dis 2005; 7 (3): 204–13

    Article  CAS  PubMed  Google Scholar 

  9. Chao A, Connell CJ, Jacobs EJ, et al. Amount, type, and timing of recreational physical activity in relation to colon and rectal cancer in older adults: the cancer prevention study II nutrition cohort. Cancer Epidemiol Biomarkers Prev 2004; 13 (12): 2187–95

    PubMed  Google Scholar 

  10. Nilsen TIL, Vatten LJ. Prospective study of colorectal cancer risk and physical activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia hypothesis. Br J Cancer 2001; 84 (3): 417–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill MJ, Morson BC, Bussey HJR. Aetiology of adenomacarcinoma sequence in the large bowel. Lancet 1978; I (8058): 245–7

    Article  Google Scholar 

  12. Neugut AI, Jacobson JS, Devivo I. Epidemiology of colorectal adenomatous polyps. Cancer Epidemiol Biomarkers Prev 1993; 2 (2): 159–76

    CAS  PubMed  Google Scholar 

  13. Kato I, Tominaga S, Matsuura A, et al. A comparative case control study of colorectal-cancer and adenoma. Jpn J Cancer Res 1990; 81 (11): 1101–8

    Article  CAS  PubMed  Google Scholar 

  14. Kono S, Shinchi K, Ikeda N, et al. Physical-activity, dietary habits and adenomatous polyps of the sigmoid colon: a studyof self-defense officials in Japan. J Clin Epidemiol 1991; 44 (11): 1255–61

    Article  CAS  PubMed  Google Scholar 

  15. Benito E, Cabeza E, Moreno V, et al. Diet and colorectal adenomas: a case-control study in Majorca. Int J Cancer 1993; 55 (2): 213–9

    Article  CAS  PubMed  Google Scholar 

  16. Little J, Logan RFA, Hawtin PG, et al. Colorectal adenomas and energy-intake, body size and physical-activity: a case-control study of subjects participating in the Nottingham Fecal Occult Blood Screening-Program. Br J Cancer 1993; 61 (1): 172–6

    Article  Google Scholar 

  17. Giovannucci E, Ascherio A, Rimm EB, et al. Physical-activity, obesity, and risk for colon-cancer and adenoma in men. Ann Intern Med 1995; 122 (5): 327–34

    Article  CAS  PubMed  Google Scholar 

  18. Sandler RS, Pritchard M, McAuliffe CA, et al. Physical-activity and the risk of colorectal adenomas. Gastroenterology 1994; 106 (4): A437

    Google Scholar 

  19. Giovannucci E, Colditz GA, Stampfer MJ, et al. Physical activity obesity and risk of colorectal adenoma in women (United States). Cancer Causes Control 1996; 7 (2): 253–63

    Article  CAS  PubMed  Google Scholar 

  20. Neugut AI, Terry MB, Hocking G, et al. Leisure and occupational physical activity and risk of colorectal adenomatous polyps. Int J Cancer 1996; 68 (6): 744–8

    Article  CAS  PubMed  Google Scholar 

  21. Lubin F, Rozen P, Arieli B, et al. Nutritional and lifestyle habits and water-fiber interaction in colorectal adenoma etiology. Cancer Epidemiol Biomarkers Prev 1997; 6 (2): 79–85

    CAS  PubMed  Google Scholar 

  22. Terry MB, Neugut AI, Bostick RM, et al. Risk factors for advanced colorectal adenomas: a pooled analysis. Cancer Epidemiol Biomarkers Prev 2002; 11 (7): 622–9

    PubMed  Google Scholar 

  23. Hauret KG, Bostick RM, Matthews CE, et al. Physical activity and reduced risk of incident sporadic colorectal adenomas: observational support for mechanisms involving energy balance and inflammation modulation. Am J Epidemiol 2004; 159 (10): 983–92

    Article  PubMed  Google Scholar 

  24. Wallace K, Baron JA, Karagas MR, et al. The association of physical activity and body mass index with the risk of large bowel polyps. Cancer Epidemiol Biomarkers Prev 2005; 14 (9): 2082–6

    Article  PubMed  Google Scholar 

  25. Stemmermann GN, Heilbrun LK, Nomura AMY. Association of diet and other factors with adenomatous polyps of the large bowel: a prospective autopsy study. Am J Clin Nutr 1988; 47 (2): 312–7

    CAS  PubMed  Google Scholar 

  26. Enger SM, Longnecker MP, Lee ER, et al. Resent and past physical activity and prevalence of colorectal adenomas. Br J Cancer 1997; 75 (5): 740–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kono S, Handa K, Hayabuchi H, et al. Obesity, weight gain and risk of colon adenomas in Japanese men. Jpn J Cancer Res 1999; 90 (8): 805–11

    Article  CAS  PubMed  Google Scholar 

  28. Boutron-Ruault MC, Senesse P, Meance S, et al. Energy intake, body mass index, physical activity, and the colorectal adenoma-carcinoma sequence. Nutr Cancer 2001; 39 (1): 50–7

    Article  Google Scholar 

  29. Colbert LH, Lanza E, Ballard-Barbash R, et al. Adenomatous polyp recurrence and physical activity in the Polyp Prevention Trial (United States). Cancer Causes Control 2002; 13 (5): 445–53

    Article  PubMed  Google Scholar 

  30. Larsen IK, Grotmol T, Almendingen K, et al. Lifestyle as a predictor for colonic neoplasia in asymptomatic individuals. BMC Gastroenterol 2006; 13 (6): 5

    Article  Google Scholar 

  31. McTiernan A, Yasui Y, Sorensen B, et al. Effect of a 12-month exercise intervention on patterns of cellular proliferation in colonic crypts: a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 2006; 15 (9): 1588–97

    Article  CAS  PubMed  Google Scholar 

  32. Basterfield L, Reul JM, Mathers JC. Impact of physical activity on intestinal cancer development in mice. J Nutr 2005; 135 (12 Suppl.): 3002S–8S

    CAS  PubMed  Google Scholar 

  33. Steindorf K, Jedrychowski W, Schmidt M, et al. Case-control study of lifetime occupational and recreational physical activity and risks of colon and rectal cancer. Eur J Cancer Prev 2005; 14 (4): 363–71

    Article  CAS  PubMed  Google Scholar 

  34. Banerjee AK, Mandal A, Chanda D, et al. Oxidant, antioxidant and physical exercise. Mol Cell Biochem 2003; 253 (1-2): 307–12

    Article  CAS  PubMed  Google Scholar 

  35. Shephard RJ, Shek PN. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med 1999; 28 (3): 177–95

    Article  CAS  PubMed  Google Scholar 

  36. Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 1999; 222 (3): 283–92

    Article  CAS  PubMed  Google Scholar 

  37. Poulsen HE, Loft S, Vistisen K. Extreme exercise and oxidative DNA modification. J Sports Sci 1996; 14: 343–6

    Article  CAS  PubMed  Google Scholar 

  38. Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer 1996; 32A (1): 30–8

    Article  CAS  PubMed  Google Scholar 

  39. Demarzo MMP, Garcia SB. Exhaustive physical exercise increases the number of colonic preneoplastic lesions in untrained rats treated with a chemical carcinogen. Cancer Lett 2004; 216 (1): 31–4

    Article  PubMed  CAS  Google Scholar 

  40. Westerlind KC. Physical activity and cancer prevention-mechanisms. Med Sci Sports Exerc 2003; 35 (11): 1834–40

    Article  PubMed  Google Scholar 

  41. Haydon AM, MacInnis RJ, English DR, et al. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut 2006; 55 (1): 62–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nickelsen TN, Jorgensen T, Kronborg O. Lifestyle and 30-day complications to surgery for colorectal cancer. Acta Oncol 2005; 44 (3): 218–23

    Article  Google Scholar 

  43. Irwin ML, Crumley D, McTiernan A, et al. Physical activity levels before and after a diagnosis of breast carcinoma: the Health, Eating, Activity, and Lifestyle (HEAL) study. Cancer 2003; 97 (7): 1746–57

    Article  PubMed  PubMed Central  Google Scholar 

  44. Courneya KS, Friedenreich CM, Quinney HA, et al. A randomized trial of exercise and quality of life in colorectal cancer survivors. Eur J Cancer Care (Engl) 2003; 12 (4): 347–57

    Article  CAS  Google Scholar 

  45. Courneya KS, Friedenreich CM, Quinney HA, et al. Predictors of adherence and contamination in a randomized trial of exercise in colorectal cancer survivors. Psychooncology 2004; 13 (12): 857–66

    Article  PubMed  Google Scholar 

  46. Courneya KS, Friedenreich CM, Quinney HA, et al. A longitudinal study of exercise barriers in colorectal cancer survivors participating in a randomized controlled trial. Ann Behav Med 2005; 29 (2): 147–53

    Article  PubMed  Google Scholar 

  47. Meyerhardt JA, Heseltine D, Niedzwiecki D, et al. The impact of physical activity on patients with stage III colon cancer: findings from intergroup trial CALGB 89803. J Clin Oncol 2005; 23 (16): 254S

    Google Scholar 

  48. Courneya KS, Friedenreich CM. Framework PEACE: an organizational model for examining physical exercise across the cancer experience. Ann Behav Med 2001; 23 (4): 263–72

    Article  CAS  PubMed  Google Scholar 

  49. Courneya KS, Friedenreich CM. Relationship between exercise during treatment and current quality of life among survivors of breast cancer. J Psychosoc Oncol 1997; 15 (3-4): 35–57

    Article  Google Scholar 

  50. Schmitz KH, Holtzman J, Courneya KS, et al. Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2005; 14 (7): 1588–95

    Article  PubMed  Google Scholar 

  51. Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc 1999; 31 (11): S646–62

    Article  CAS  PubMed  Google Scholar 

  52. Coebergh JWW, Janssen-Heijnen MLG, Post PN, et al. Serious co-morbidity among unselected cancer patients newly diagnosed in the southeastern part of the Netherlands in 1993-1996. J Clin Epidemiol 1999; 52 (12): 1131–6

    Article  CAS  PubMed  Google Scholar 

  53. Baade PD, Fritschi L, Eakin EG. Non-cancer mortality among people diagnosed with cancer (Australia). Cancer Causes Control 2006; 17 (3): 287–97

    Article  PubMed  Google Scholar 

  54. Thune I, Lund E. Physical activity and risk of colorectal cancer in men and women. Br J Cancer 1996; 73 (9): 1134–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peters HPF, De Vries WR, Vanberge-Henegouwen GP, et al. Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut 2001; 48 (3): 435–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holdstock DJ, Misiewicz JJ, Smith T, et al. Propulsion (mass movement) in the human colon and its relationship to meals and somatic activity. Gut 1970; 21: 973–8

    Google Scholar 

  57. De Schryver AM, Keulemans YC, Peters HP, et al. Effects of regular physical activity on defecation pattern in middle-aged patients complaining of chronic constipation. Scand J Gastroenterol 2005; 40 (4): 422–9

    Article  PubMed  Google Scholar 

  58. Cordain L, Latin RW, Behnke JJ. The effects of an aerobic running program on bowel transit time. J Sports Med Phys Fitness 1986; 26 (1): 101–4

    CAS  PubMed  Google Scholar 

  59. Oettle GJ. Effect of moderate exercise on bowel habit. Gut 1991; 32 (8): 941–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koffler KH, Menkes A, Redmond RA, et al. Strength training accelerates gastrointestinal transit in middle-aged and older men. Med Sci Sports Exerc 1992; 24 (4): 415–9

    Article  CAS  PubMed  Google Scholar 

  61. Liu F, Kondo T, Toda Y. Brief physical inactivity prolongs colonic transit-time in elderly active men. Int J Sports Med 1993; 14 (8): 465–7

    Article  CAS  PubMed  Google Scholar 

  62. Bingham SA, Cummings JH. Effect of exercise and physical fitness on large intestinal function. Gastroenterology 1989; 97 (6): 1389–99

    Article  CAS  PubMed  Google Scholar 

  63. Coenen C, Wegener M, Wedmann B, et al. Does physical exercise influence bowel transit-time in healthy-young men. Am J Gastroenterol 1992; 87 (3): 292–5

    CAS  PubMed  Google Scholar 

  64. Robertson G, Meshkinpour H, Vandenberg K, et al. Effects of exercise on total and segmental colon transit. J Clin Gastroenterol 1993; 16 (4): 300–3

    Article  CAS  PubMed  Google Scholar 

  65. Schatzkin A, Lanza E, Corle D, et al. Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. N Engl J Med 2000; 342 (16): 1149–55

    Article  CAS  PubMed  Google Scholar 

  66. Fuchs CS, Giovannucci EL, Colditz GA, et al. Dietary fiber and the risk of colorectal cancer and adenoma in women. N Engl J Med 1999; 340 (3): 169–76

    Article  CAS  PubMed  Google Scholar 

  67. Alberts DS, Martinez ME, Roe DJ, et al. Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. N Engl J Med 2000; 342 (16): 1156–62

    Article  CAS  PubMed  Google Scholar 

  68. Bonithon-Kopp C, Kronborg O, Giacosa A, et al. Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. Lancet 2000; 356 (9238): 1300–6

    Article  CAS  PubMed  Google Scholar 

  69. Terry P, Giovannucci E, Michels KB, et al. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst 2001; 93 (7): 525–33

    Article  CAS  PubMed  Google Scholar 

  70. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med 2000; 248 (3): 171–83

    Article  Google Scholar 

  71. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420 (6917): 860–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baniyash M. Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin Cancer Biol 2006; 16 (1): 80–8

    Article  CAS  PubMed  Google Scholar 

  73. Boland CR, Luciani MG, Gasche C, et al. Infection, inflammation, and gastrointestinal cancer. Gut 2005; 54 (9): 1321–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johne B, Fagerhol MK, Lyberg T, et al. Functional and clinical aspects of the myelomonocyte protein calprotectin. J Clin Pathol 1997; 50 (3): 113–23

    Google Scholar 

  75. Kronborg O, Ugstad M, Fuglerud P, et al. Faecal calprotectin levels in a high risk population for colorectal neoplasia. Gut 2000; 46 (6): 795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poullis A, Foster R, Shetty A, et al. Bowel inflammation as measured by fecal calprotectin: a link between lifestyle factors and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2004; 13 (2): 279–84

    Article  CAS  PubMed  Google Scholar 

  77. Furuta Y, Hall ER, Sanduja S, et al. Prostaglandin production by marine tumors as a predictor for therapeutic response to indomethacin. Cancer Res 1988; 48 (11): 3002–7

    CAS  PubMed  Google Scholar 

  78. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon-cancer. J Lab Clin Med 1993; 122 (5): 518–23

    CAS  PubMed  Google Scholar 

  79. Pugh S, Thomas GAO. Patients with adenomatous polyps and carcinomas have increased colonic mucosal prostaglandin E(2). Gut 1994; 35 (5): 675–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mahmoud NN, Dannenberg AJ, Bilinski RT, et al. Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis 1999; 20 (2): 199–303

    Article  Google Scholar 

  81. Giardiello FM, Casero RA, Hamilton SR, et al. Prostanoids, ornithine decarboxylase, and polyamines in primary chemoprevention of familial adenomatous polyposis. Gastroenterology 2004; 126 (2): 425–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez ME, Heddens D, Earnest DL, et al. Physical activity, body mass index, and prostaglandin E-2 levels in rectal mucosa. J Natl Cancer Inst 1999; 91 (11): 950–3

    Article  CAS  PubMed  Google Scholar 

  83. Corpet DE, Pierre F. Point: from animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol Biomarkers Prev 2003; 12 (5): 391–400

    PubMed  PubMed Central  Google Scholar 

  84. Pischon T, Hankinson SE, Hotamisligil GS, et al. Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obes Res 2003; 11 (9): 1055–64

    Article  CAS  PubMed  Google Scholar 

  85. Jankord R, Jemiolo B. Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exerc 2004; 36 (6): 960–4

    Article  CAS  PubMed  Google Scholar 

  86. Stewart LK, Flynn MG, Campbell WW, et al. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun 2005; 19 (5): 389–97

    Article  CAS  PubMed  Google Scholar 

  87. Smith JK, Dykes R, Douglas JE, et al. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA 1999; 281 (18): 1722–7

    Article  CAS  PubMed  Google Scholar 

  88. You T, Berman DM, Ryan AS, et al. Effects of hypocaloric diet and exercise training on inflammation and adipocyte lipolysis in obese postmenopausal women. J Clin Endocrinol Metab 2004; 89 (4): 1739–46

    Article  CAS  PubMed  Google Scholar 

  89. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 2002; 23 (6): 301–4

    Article  CAS  PubMed  Google Scholar 

  90. Flynn MG, McFarlin BK, Phillips MD, et al. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise trained elderly women. J Appl Physiol 2003; 95 (5): 1833–42

    Article  CAS  PubMed  Google Scholar 

  91. McFarlin BK, Flynn MG, Campbell WW, et al. TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med Sci Sports Exerc 2004; 36 (11): 1876–83

    Article  CAS  PubMed  Google Scholar 

  92. Armstrong F, Mathers JC. Kill and cure: dietary augmentation of immune defences against colon cancer. Proc Nutr Soc 2000; 59 (2): 215–20

    Article  CAS  PubMed  Google Scholar 

  93. Shevde LA, Joshi NN, Dudhat SB, et al. Immune functions, clinical parameters and hormone receptor status in breast cancer patients. J Cancer Res Clin Oncol 1999; 125 (5): 313–20

    Article  CAS  PubMed  Google Scholar 

  94. Liljefors M, Nilsson B, Hjelm Skog AL, et al. Natural killer (NK) cell function is a strong prognostic factor in colorectal carcinoma patients treated with the monoclonal antibody 17-1A. Int J Cancer 2003; 105 (5): 717–23

    Article  CAS  PubMed  Google Scholar 

  95. Newsholme EA, Parry-Billings M. Effects of exercise on the immune system. In: Bouchard C, Shephard RJ, Stephens T, editors. Physical activity, fitness, and health: international proceedings consensus statement. Champaign (IL): Human Kinetics, 1994: 451

    Google Scholar 

  96. Dishman RK, Hong S, Soares J, et al. Activity-wheel running blunts suppression of splenic natural killer cell cytotoxicity after sympathectomy and footshock. Physiol Behav 2000; 71 (3-4): 297–304

    Article  CAS  PubMed  Google Scholar 

  97. Dishman RK, Warren JM, Hong S, et al. Treadmill exercise training blunts suppression of splenic natural killer cell cytolysis after footshock. J Appl Physiol 2000; 88 (6): 2176–82

    CAS  PubMed  Google Scholar 

  98. Fairey AS, Courneya KS, Field CJ, et al. Physical exercise and immune system function in cancer survivors: a comprehensive review and future directions. Cancer 2002; 94 (2): 539–51

    Article  PubMed  Google Scholar 

  99. Na YM, Kim MY, Kim YK, et al. Exercise therapy effect on natural killer cell cytotoxic activity in stomach cancer patients after curative surgery. Arch Phys Med Rehabil 2000; 81 (6): 777–9

    Article  CAS  PubMed  Google Scholar 

  100. Nieman DC, Cook VD, Henson DA, et al. Moderate exercise training and natural killer cell cytotoxic activity in breast cancer patients. Int J Sports Med 1995; 16 (5): 334–7

    Article  CAS  PubMed  Google Scholar 

  101. Hayes SC, Rowbottom D, Davies PS, et al. Immunological changes after cancer treatment and participation in an exercise program. Med Sci Sports Exerc 2003; 35 (1): 2–9

    Article  PubMed  Google Scholar 

  102. Allgayer H, Nicolaus S, Schreiber S. Decreased interleukin-1 receptor antagonist response following moderate exercise in patients with colorectal carcinoma after primary treatment. Cancer Detect Prev 2004; 28 (3): 208–13

    Article  CAS  PubMed  Google Scholar 

  103. Nieman DC. Exercise immunology: practical applications. Int J Sports Med 1997; 18 Suppl. 1: S91–100

    Article  Google Scholar 

  104. Nieman DC. Exercise and resistance to infection. Can J Physiol Pharmacol 1998; 76 (5): 573–80

    Article  CAS  PubMed  Google Scholar 

  105. Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001; 7: 66–89

    CAS  PubMed  Google Scholar 

  106. Hu FB, Manson JE, Liu S, et al. Prospective study of adult onset diabetes 106. Hu FB, Manson JE, Liu S, et al. Prospective study of adult onset diabetes mellitus (type 2) and risk of colorectal cancer in women. J Natl Cancer Inst 1999; 91 (6): 542–7

    Article  CAS  PubMed  Google Scholar 

  107. La Vecchia C, Negri E, Decarli A, et al. Diabetes mellitus and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 1997; 6 (12): 1007–10

    PubMed  Google Scholar 

  108. Keku TO, Lund PK, Galanko J, et al. Insulin resistance, apoptosis, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 2005; 14 (9): 2076–81

    Article  CAS  PubMed  Google Scholar 

  109. Schoen RE, Weissfeld JL, Kuller LH, et al. Insulin-like growth factor-I and insulin are associated with the presence and advancement of adenomatous polyps. Gastroenterology 2005; 129 (2): 464–75

    Article  PubMed  Google Scholar 

  110. Kaaks R, Toniolo P, Akhmedkhanov A, et al. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst 2000; 92 (19): 1592–600

    Article  CAS  PubMed  Google Scholar 

  111. Ma J, Giovannucci E, Pollak M, et al. A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst 2004; 96 (7): 546–53

    Article  CAS  PubMed  Google Scholar 

  112. Yam D, Fink A, Mashiah A, et al. Hyperinsulinemia in colon, stomach and breast cancer patients. Cancer Lett 1996; 104 (2): 129–32

    Article  CAS  PubMed  Google Scholar 

  113. Hawley JA. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev 2004; 20 (5): 383–93

    Article  CAS  PubMed  Google Scholar 

  114. LaMonte MJ, Blair SN, Church TS. Physical activity and diabetes prevention. J Appl Physiol 2005; 99 (3): 1205–13

    Article  PubMed  Google Scholar 

  115. Platz EA, Hankinson SE, Rifai N, et al. Glycosylated hemoglobin and risk of colorectal cancer and adenoma (United States). Cancer Causes Control 1999; 10 (5): 379–86

    Article  CAS  PubMed  Google Scholar 

  116. Irwin ML, McTiernan A, Bernstein L, et al. Relationship of obesity and physical activity with C-peptide, leptin, and insulin-like growth factors in breast cancer survivors. Cancer Epidemiol Biomarkers Prev 2005; 14 (12): 2881–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmitz KH, Ahmed RL, Hannan PJ, et al. Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev 2005; 14 (7): 1672–80

    Article  CAS  PubMed  Google Scholar 

  118. Fairey AS, Courneya KS, Field CJ, et al. Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 2003; 12 (8): 721–7

    CAS  PubMed  Google Scholar 

  119. Davies M, Gupta S, Goldspink G, et al. The insulin-like growth factor system and colorectal cancer: clinical and experimental evidence. Int J Colorectal Dis 2006; 21 (3): 201–8

    Article  CAS  PubMed  Google Scholar 

  120. Ma J, Pollak M, Giovannucci E, et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 1999; 91 (7): 620–5

    Article  CAS  PubMed  Google Scholar 

  121. Renehan AG, Painter JE, Atkin WS, et al. High-risk colorectal adenomas and serum insulin-like growth factors. Br J Surg 2001; 88 (1): 107–13

    Article  CAS  PubMed  Google Scholar 

  122. Renehan AG, Zwahlen M, Minder C, et al. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 2004; 363 (9418): 1346–53

    Article  CAS  PubMed  Google Scholar 

  123. Landin-Wilhelmsen K, Wilhelmsen L, Lappas G, et al. Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol (Oxf) 1994; 41 (3): 351–7

    Article  CAS  Google Scholar 

  124. Rudman D, Mattson DE. Serum insulin-like growth factor I in healthy older men in relation to physical activity. J Am Geriatr Soc 1994; 42 (1): 71–6

    Article  CAS  PubMed  Google Scholar 

  125. Goodman-Gruen D, Barrett-Connor E. Epidemiology of insulin like growth factor-I in elderly men and women: the Rancho Bernardo study. Am J Epidemiol 1997; 145 (11): 970–6

    Article  CAS  PubMed  Google Scholar 

  126. Chang S, Wu X, Yu H, et al. Plasma concentrations of insulin like growth factors among healthy adult men and postmenopausal women: associations with body composition, lifestyle, and reproductive factors. Cancer Epidemiol Biomarkers Prev 2002; 11 (8): 758–66

    CAS  PubMed  Google Scholar 

  127. Morimoto LM, Newcomb PA, White E, et al. Variation in plasma insulin-like growth factor-1 and insulin-like growth factor binding protein-3: personal and lifestyle factors (United States). Cancer Causes Control 2005; 16 (8): 917–27

    Article  PubMed  Google Scholar 

  128. Haydon AM, MacInnis RJ, English DR, et al. Physical activity, insulin-like growth factor 1, insulin-like growth factor binding protein 3, and survival from colorectal cancer. Gut 2006; 55 (5): 689–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Manetta J, Brun JF, Fedou C, et al. Serum levels of insulin-like growth factor-I (IGF-I), and IGF-binding proteins-1 and -3 in middle-aged and young athletes versus sedentary men: relationship with glucose disposal. Metabolism 2003; 52 (7): 821–6

    Article  CAS  PubMed  Google Scholar 

  130. Filaire E, Jouanel P, Colombier M, et al. Effects of 16 weeks of training prior to a major competition on hormonal and biochemical parameters in young elite gymnasts. J Pediatr Endocrinol Metab 2003; 16 (5): 741–50

    Article  CAS  PubMed  Google Scholar 

  131. Gomez-Merino D, Chennaoui M, Drogou C, et al. Influence of energy deficiency on the insulin-like growth factor I axis in a military training program. Horm Metab Res 2004; 36 (7): 506–11

    Article  CAS  PubMed  Google Scholar 

  132. Rosendal L, Langberg H, Flyvbjerg A, et al. Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. J Appl Physiol 2002; 93 (5): 1669–75

    Article  CAS  PubMed  Google Scholar 

  133. Poehlman ET, Rosen CJ, Copeland KC. The influence of endurance training on insulin-like growth factor-1 in older individuals. Metabolism 1994; 43 (11): 1401–5

    Article  CAS  PubMed  Google Scholar 

  134. Nemet D, Connolly PH, Pontello-Pescatello AM, et al. Negative energy balance plays a major role in the IGF-I response to exercise training. J Appl Physiol 2004; 96 (1): 276–82

    Article  CAS  PubMed  Google Scholar 

  135. Cho KR, Vogelstein B. Suppressor gene alterations in the colorectal adenoma-carcinoma sequence. J Cell Biochem Suppl 1992; 16G: 137–41

    Article  CAS  PubMed  Google Scholar 

  136. Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327 (6120): 293–7

    Article  CAS  PubMed  Google Scholar 

  137. Rashid A, Zahurak M, Goodman SN, et al. Genetic epidemiology of mutated K-ras proto-oncogene, altered suppressor genes, and microsatellite instability in colorectal adenomas. Gut 1999; 44 (6): 826–33

    Article  Google Scholar 

  138. Tortola S, Marcuello E, Gonzalez I, et al. p53 and K-ras gene mutations correlate with tumor aggressiveness but are not of routine prognostic value in colorectal cancer. J Clin Oncol 1999; 17 (5): 1375–81

    CAS  PubMed  Google Scholar 

  139. Leung PS, Aronson WJ, Ngo TH, et al. Exercise alters the IGF axis in vivo and increases p53 protein in prostate tumor cells in vitro. J Appl Physiol 2004; 96 (2): 450–4

    Article  CAS  PubMed  Google Scholar 

  140. Slattery ML, Anderson K, Curtin K, et al. Lifestyle factors and Ki-ras mutations in colon cancer tumors. Mutat Res 2001; 483 (1-2): 73–81

    Article  CAS  PubMed  Google Scholar 

  141. Heavey PM, McKenna D, Rowland IR. Colorectal cancer and the relationship between genes and the environment. Nutr Cancer 2004; 48 (2): 124–41

    Article  Google Scholar 

  142. Gunter MJ, Leitzmann MF. Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem 2006; 17 (3): 145–56

    Article  CAS  PubMed  Google Scholar 

  143. MacInnis RJ, English DR, Hopper JL, et al. Body size and composition and colon cancer risk in men. Cancer Epidemiol Biomarkers Prev 2004; 13 (4): 553–9

    PubMed  Google Scholar 

  144. MacInnis RJ, English DR, Hopper JL, et al. Body size and composition and colon cancer risk in women. Int J Cancer 2006; 118 (6): 1496–500

    Article  CAS  PubMed  Google Scholar 

  145. Almendingen K, Hofstad B, Vatn MH. Does high body fatness increase the risk of presence and growth of colorectal adenomas followed up in situ for 3 years? Am J Gastroenterol 2001; 96 (7): 2238–46

    Article  CAS  PubMed  Google Scholar 

  146. Slattery ML, Ballard-Barbash R, Edwards S, et al. Body mass index and colon cancer: an evaluation of the modifying effects of estrogen (United States). Cancer Causes Control 2003; 14 (1): 75–84

    Article  CAS  PubMed  Google Scholar 

  147. Mao Y, Pan S, Wen SW, et al. Physical inactivity, energy intake, obesity and the risk of rectal cancer in Canada. Int J Cancer 2003; 105 (6): 831–7

    Article  CAS  PubMed  Google Scholar 

  148. Grundy SM, Blackburn G, Higgins M, et al. Physical activity in the prevention and treatment of obesity and its comorbidities. Med Sci Sports Exerc 1999; 31 (11 Suppl.): S502–8

    Article  CAS  PubMed  Google Scholar 

  149. Bensimhon DR, Kraus WE, Donahue MP. Obesity and physical activity: a review. Am Heart J 2006; 151 (3): 598–603

    Article  PubMed  Google Scholar 

  150. Bouchard C, Tremblay A, Nadeau A. Long-term exercise training with constant energy intake: 1. Effect on body composition and selected metabolic variables. Int J Obes 1990; 14 (1): 57–73

    CAS  PubMed  Google Scholar 

  151. Thompson HJ, Zhu Z, Jiang W. Weight control and breast cancer prevention: are the effects of reduced energy intake equivalent to those of increased energy expenditure? J Nutr 2004; 134 (12 Suppl.): 3407S–11S

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by a grant from by Trafford General Hospital NHS Trust. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Harriss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harriss, D.J., Cable, N.T., George, K. et al. Physical Activity Before and After Diagnosis of Colorectal Cancer. Sports Med 37, 947–960 (2007). https://doi.org/10.2165/00007256-200737110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200737110-00003

Keywords

Navigation