Skip to main content
Log in

Leptin Alters Adrenal Responsiveness by Decreasing Expression of ACTH-R, StAR, and P450c21 in Hypoxemic Fetal Sheep

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The late gestation increase in adrenal responsiveness to adrenocorticotropin (ACTH) is dependent upon the upregulation of the ACTH receptor (ACTH-R), steroidogenic acute regulatory protein (StAR), and steroidogenic enzymes in the fetal adrenal. Long-term hypoxia decreases the expression of these and adrenal responsiveness to ACTH in vivo. Leptin, an adipocyte-derived hormone which attenuates the peripartum increase in fetal plasma cortisol is elevated in hypoxic fetuses. Therefore, we hypothesized that increases in plasma leptin will inhibit the expression of the ACTH-R, StAR, and steroidogenic enzymes and attenuate adrenal responsiveness in hypoxic fetuses. Spontaneously hypoxemic fetal sheep (132 days of gestation, PO2 ∼15 mm Hg) were infused with recombinant human leptin (n = 8) or saline (n = 7) for 96 hours. An ACTH challenge was performed at 72 hours of infusion to assess adrenal responsiveness. Plasma cortisol and ACTH were measured daily and adrenals were collected after 96 hours infusion for messenger RNA (mRNA) and protein expression measurement. Plasma cortisol concentrations were lower in leptin- compared with saline-infused fetuses (14.8 ± 3.2 vs 42.3 ± 9.6 ng/mL, P < .05), as was the cortisol:ACTH ratio (0.9 ± 0.074 vs 46 ± 1.49, P < .05). Increases in cortisol concentrations were blunted in the leptin-treated group after ACTH1–24 challenge (F = 12.2, P < .0001). Adrenal ACTH-R, StAR, and P450c21 expression levels were reduced in leptin-treated fetuses (P < .05), whereas the expression of Ob-Ra and Ob-Rb leptin receptor isoforms remained unchanged. Our results indicate that leptin blunts adrenal responsiveness in the late gestation hypoxemic fetus, and this effect appears mediated by decreased adrenal ACTH-R, StAR, and P450c21 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and para-crine regulation of birth at term and preterm. Endocr Rev. 2000; 21(5):514–550.

    PubMed  CAS  Google Scholar 

  2. Jéquier E. Leptin signaling, adiposity, and energy balance. Ann NY Acad Sci. 2002;967:379–388.

    Article  PubMed  Google Scholar 

  3. Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol. 2000;21(3):263–307.

    Article  PubMed  CAS  Google Scholar 

  4. Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588): 250–252.

    Article  PubMed  CAS  Google Scholar 

  5. Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology. 1997;138(9):3859–3863.

    Article  PubMed  CAS  Google Scholar 

  6. Yuen BSJ, Owens PC, Symonds ME, et al. Effects of leptin on fetal plasma adrenocorticotropic hormone and cortisol concentrations and the timing of parturition in the sheep. Biol Reprod. 2004; 70(6):1650–1657.

    Article  PubMed  CAS  Google Scholar 

  7. Yuen BS, McMillen C, Symonds ME, Owens PC. Abundance of leptin mRNA in fetal adipose tissue is related to fetal body weight. J Endocrinol. 1999;163(3):R11–R14.

    Article  PubMed  CAS  Google Scholar 

  8. Howe DC, Gertler A, Challis JR. The late gestation increase in circulating ACTH and cortisol in the fetal sheep is suppressed by intracerebroventricular infusion of recombinant ovine leptin. J Endocrinol. 2002;174(2):259–266.

    Article  PubMed  CAS  Google Scholar 

  9. Carey LC, Su Y, Valego NK, Rose JC. Infusion of ACTH stimulates expression of adrenal ACTH receptor and steroidogenic acute regulatory protein mRNA in fetal sheep. Am J Physiol Endocrinol Metab. 2006;291(2):E214–E220.

    Article  PubMed  CAS  Google Scholar 

  10. Valego NK, Su Y, Carey LC, et al. Hypothalamic-pituitary disconnection in fetal sheep blocks the peripartum increases in adrenal responsiveness and adrenal ACTH receptor expression. Am J Physiol Regul Integr Comp Physiol. 2005;289(2): R410–R417.

    Article  PubMed  CAS  Google Scholar 

  11. Phillips ID, Ross JT, Owens JA, Young IR, McMillen IC. The peptide ACTH(1–39), adrenal growth and steroidogenesis in the sheep fetus after disconnection of the hypothalamus and pituitary. J Physiol. 1996;491(pt 3):871–879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Harvey LM, Gilbert RD, Longo LD, Ducsay CA. Changes in ovine fetal adrenocortical responsiveness after long-term hypoxemia. Am J Physiol Endocrinol Metab. 1993;264(5 pt 1):E741–E747.

    Article  CAS  Google Scholar 

  13. Myers DA, Bell PA, Hyatt K, Mlynarczyk M, Ducsay CA. Long-term hypoxia enhances proopiomelanocortin processing in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1178–R1184.

    Article  PubMed  CAS  Google Scholar 

  14. Myers DA, Hyatt K, Mlynarczyk M, Bird IM, Ducsay CA. Long-term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;289(6): R1707–R1714.

    Article  PubMed  CAS  Google Scholar 

  15. Ducsay CA, Hyatt K, Mlynarczyk M, Kaushal KM, Myers DA. Long-term hypoxia increases leptin receptors and plasma leptin concentrations in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1406–R1413.

    Article  PubMed  CAS  Google Scholar 

  16. Kendall NR, Gutierrez CG, Scaramuzzi RJ, et al. Direct in vivo effects of leptin on ovarian steroidogenesis in sheep. Reproduction. 2004;128(6):757–765.

    Article  PubMed  CAS  Google Scholar 

  17. Dyer CJ, Simmons JM, Matteri RL, Keisler DH. cDNA cloning and tissue-specific gene expression of ovine leptin, NPY-Y1 receptor, and NPY-Y2 receptor. Domest Anim Endocrinol. 1997; 14(5):295–303.

    Article  PubMed  CAS  Google Scholar 

  18. Gertler A, Simmons J, Keisler DH. Large-scale preparation of biologically active recombinant ovine obese protein (leptin). FEBS Lett. 1998;422(2):137–140.

    Article  PubMed  CAS  Google Scholar 

  19. Munoz-Gutierrez M, Findlay PA, Adam CL, et al. The ovarian expression of mRNAs for aromatase, IGF-I receptor, IGF-binding protein-2, -4 and -5, leptin and leptin receptor in cycling ewes after three days of leptin infusion. Reproduction. 2005; 130(6):869–881.

    Article  PubMed  CAS  Google Scholar 

  20. Su Y, Figueroa JP, Rose JC. Antenatal betamethasone (Beta) exposure enhances leptin induced inhibition of steroidogenic acute regulatory protein (StAR) and ACTH-receptor expression in adult ovine adrenocortical cells [Abstract]. Endocr Rev 2010; 31(3 Suppl 1):S692.

    Google Scholar 

  21. Block WA Jr, Draper ML, Rose JC, Schwartz J. Maturation of cortisol responses to adrenocorticotropic hormone in twin fetal sheep in vivo. Am J Obstet Gynecol. 1999;181(2):498–502.

    Article  PubMed  CAS  Google Scholar 

  22. Delavaud C, Bocquier F, Chilliard Y, et al. Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep. J Endocrinol. 2000;165(2):519–526.

    Article  PubMed  CAS  Google Scholar 

  23. Ehrhardt RA, Slepetis RM, Siegal-Willott J, Van Amburgh ME, Bell AW, Boisclair YR. Development of a specific radioimmu-noassay to measure physiological changes of circulating leptin in cattle and sheep. J Endocrinol. 2000;166(3):519–528.

    Article  PubMed  CAS  Google Scholar 

  24. Applied Biosystems. Relative Quantitation of Gene Expression. User Bulletin #2. ABI PRISM 7700 Sequence Detection System. 2001:11–5.

  25. Kerr DR, Castro MI, Valego NK, Rawashdeh NM, Rose JC. Corticotropin and cortisol responses to corticotropin-releasing factor in the chronically hypoxemic ovine fetus. Am J Obstet Gynecol. 1992;167(6):1686–1690.

    Article  PubMed  CAS  Google Scholar 

  26. Boddy K, Jones CT, Mantell C, Ratcliffe JG, Robinson JS. Changes in plasma ACTH and corticosteroid of the maternal and fetal sheep during hypoxia. Endocrinology. 1974;94(2):588–591.

    Article  PubMed  CAS  Google Scholar 

  27. Boshier DP, Holloway H, Liggins GC. Effects of cortisol and ACTH on adrenocortical growth and cytodifferentiation in the hypophysectomized fetal sheep. J Dev Physiol. 1981;3(6):355–373.

    PubMed  CAS  Google Scholar 

  28. Robinson JS, Kingston EJ, Jones CT, Thorburn GD. Studies on experimental growth retardation in sheep. The effect of removal of a endometrial caruncles on fetal size and metabolism. J Dev Physiol. 1979;1(5):379–398.

    PubMed  CAS  Google Scholar 

  29. Bocking AD, McMillen IC, Harding R, Thorburn GD. Effect of reduced uterine blood flow on fetal and maternal cortisol. J Dev Physiol. 1986;8(4):237–245.

    PubMed  CAS  Google Scholar 

  30. Challis JR, Fraher L, Oosterhuis J, White SE, Bocking AD. Fetal and maternal endocrine responses to prolonged reductions in uterine blood flow in pregnant sheep. Am J Obstet Gynecol. 1989; 160(4):926–932.

    Article  PubMed  CAS  Google Scholar 

  31. Gagnon R, Challis J, Johnston L, Fraher L. Fetal endocrine responses to chronic placental embolization in the late-gestation ovine fetus. Am J Obstet Gynecol. 1994;170(3):929–938.

    Article  PubMed  CAS  Google Scholar 

  32. Murotsuki J, Gagnon R, Matthews SG, Challis JR. Effects of long-term hypoxemia on pituitary-adrenal function in fetal sheep. Am J Physiol Endocrinol Metab. 1996;271(4 pt 1):E678–E685.

    Article  CAS  Google Scholar 

  33. Gardner DS, Fletcher AJW, Bloomfield MR, Fowden AL, Giussani DA. Effects of prevailing hypoxaemia, acidaemia or hypoglycaemia upon the cardiovascular, endocrine and metabolic responses to acute hypoxaemia in the ovine fetus. J Physiol. 2002; 540(pt 1):351–366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rose JC, Meis PJ, Urban RB, Greiss FC. In vivo evidence for increased adrenal sensitivity to adrenocorticotropin-(1–24) in the lamb fetus late in gestation. Endocrinology. 1982;111(1): 80–85.

    Article  PubMed  CAS  Google Scholar 

  35. Hsu HT, Chang YC, Chiu YN, Liu CL, Chang KJ, Guo IC. Leptin interferes with adrenocorticotropin/3’,5’-cyclic adenosine mono-phosphate (cAMP) signaling, possibly through a Janus kinase 2-phosphatidylinositol 3-kinase/Akt-phosphodiesterase 3-cAMP pathway, to down-regulate cholesterol side-chain cleavage cyto-chrome P450 enzyme in human adrenocortical NCI-H295 cell line. J Clin Endocrinol Metab. 2006;91(7):2761–2769.

    Article  PubMed  CAS  Google Scholar 

  36. Forhead AJ, Lamb CA, Franko KL, et al. Role of leptin in the regulation of growth and carbohydrate metabolism in the ovine fetus during late gestation. J Physiol. 2008;586(9):2393–2403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mercer JG, Hoggard N, Williams LM, et al. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol. 1996;8(10):733–735.

    Article  PubMed  CAS  Google Scholar 

  38. Zamorano PL, Mahesh VB, De Sevilla LM, Chorich LP, Bhat GK, Brann DW. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat. Neuroendocrinology. 1997;65(3):223–232.

    Article  PubMed  CAS  Google Scholar 

  39. Dyer CJ, Simmons JM, Matteri RL, Keisler DH. Leptin receptor mRNA is expressed in ewe anterior pituitary and adipose tissues and is differentially expressed in hypothalamic regions of well-fed and feed-restricted ewes. Domest Anim Endocrinol. 1997; 14(2):119–128.

    Article  PubMed  CAS  Google Scholar 

  40. Luoh SM, Di Marco F, Levin N, et al. Cloning and characterization of a human leptin receptor using a biologically active leptin immunoadhesin. J Mol Endocrinol. 1997;18(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  41. Clark KA, MohanKumar SMJ, Kasturi BS, MohanKumar PS. Effects of central and systemic administration of leptin on neurotransmitter concentrations in specific areas of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2006;290(2): R306–R312.

    Article  PubMed  CAS  Google Scholar 

  42. Itoi K, Helmreich DL, Lopez-Figueroa MO, Watson SJ. Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine. J Neurosci. 1999;19(13):5464–5472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I. Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology. 1987;121(3):883–892.

    Article  PubMed  CAS  Google Scholar 

  44. Le Roy C, Li JY, Stocco DM, Langlois D, Saez JM. Regulation by adrenocorticotropin (ACTH), angiotensin II, transforming growth factor-β, and insulin-like growth factor I of bovine adrenal cell steroidogenic capacity and expression of ACTH receptor, steroidogenic acute regulatory protein, cytochrome P450c17, and 3β-hydroxysteroid dehydrogenase. Endocrinology. 2000; 141(5):1599–1607.

    Article  PubMed  Google Scholar 

  45. Lebrethon MC, Naville D, Begeot M, Saez JM. Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II. J Clin Invest. 1994;93(4):1828–1833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu J, Heikkila P, Kahri AI, Voutilainen R. Expression of the steroidogenic acute regulatory protein mRNA in adrenal tumors and cultured adrenal cells. J Endocrinol. 1996;150(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  47. Nicol MR, Wang H, Ivell R, Morley SD, Walker SW, Mason JI. The expression of steroidogenic acute regulatory protein (StAR) in bovine adrenocortical cells. Endocr Res. 1998;24(3–4):565–569.

    Article  PubMed  CAS  Google Scholar 

  48. Penhoat A, Jaillard C, Saez JM. Regulation of bovine adrenal cell corticotropin receptor mRNA levels by corticotropin (ACTH) and angiotensin-II (A-II). Mol Cell Endocrinol. 1994;103(1–2): R7–R10.

    Article  PubMed  CAS  Google Scholar 

  49. Mountjoy KG, Bird IM, Rainey WE, Cone RD. ACTH induces up-regulation of ACTH receptor mRNA in mouse and human adrenocortical cell lines. Mol Cell Endocrinol. 1994;99(1):R17–R20.

    Article  PubMed  CAS  Google Scholar 

  50. Jones CT, Luther E, Ritchie JW, Worthington D. The clearance of ACTH from the plasma of adult and fetal sheep. Endocrinology. 1975;96(1):231–234.

    Article  PubMed  CAS  Google Scholar 

  51. Sweeney G. Leptin signalling. Cell Signal. 2002;14(8):655–663.

    Article  PubMed  CAS  Google Scholar 

  52. Tena-Sempere M, Pinilla L, Gonzalez LC, Casanueva FF, Diéguez C, Aguilar E. Homologous and heterologous down-regulation of leptin receptor messenger ribonucleic acid in rat adrenal gland. J Endocrinol. 2000;167(3):479–486.

    Article  PubMed  CAS  Google Scholar 

  53. Monau TR, Vargas VE, King N, Yellon SM, Myers DA, Ducsay CA. Long-term hypoxia increases endothelial nitric oxide synthase expression in the ovine fetal adrenal. Reprod Sci. 2009;16(9): 865–874.

    Article  PubMed  CAS  Google Scholar 

  54. Monau TR, Vargas VE, Lubo Z, Myers DA, Ducsay CA. Nitric oxide inhibits ACTH-induced cortisol production in near-term, long-term hypoxic ovine fetal adrenocortical cells. Reprod Sci. 2010;17(10):955–962.

    Article  PubMed  CAS  Google Scholar 

  55. Tsubaki M, Hiwatashi A, Ichikawa Y, Hori H. Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: effects of cholesterol and its analogues. Biochemistry. 1987;26(14):4527–4534.

    Article  PubMed  CAS  Google Scholar 

  56. Tsubaki M, Ichikawa Y, Fujimoto Y, Yu NT, Hori H. Active site of bovine adrenocortical cytochrome P-450(11) beta studied by resonance Raman and electron paramagnetic resonance spectroscopies: distinction from cytochrome P-450scc. Biochemistry. 1990;29(37):8805–8812.

    Article  PubMed  CAS  Google Scholar 

  57. Nakajin S, Hall PF. Side chain cleavage of C21 steroids by testicular microsomal cytochrome P-450 (17-hydroxylase/lyase): involvement of heme. J Steroid Biochem. 1983; 19(3):1345–1348.

    Article  PubMed  CAS  Google Scholar 

  58. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151.

    Article  PubMed  Google Scholar 

  59. Peterson JK, Moran F, Conley AJ, Bird IM. Zonal expression of endothelial nitric oxide synthase in sheep and rhesus adrenal cortex. Endocrinology. 2001;142(12):5351–5363.

    Article  PubMed  CAS  Google Scholar 

  60. Alexe DM, Syridou G, Petridou ET. Determinants of early life leptin levels and later life degenerative outcomes. Clin Med Res. 2006;4(4):326–335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Rose PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Carey, L.C., Rose, J.C. et al. Leptin Alters Adrenal Responsiveness by Decreasing Expression of ACTH-R, StAR, and P450c21 in Hypoxemic Fetal Sheep. Reprod. Sci. 19, 1075–1084 (2012). https://doi.org/10.1177/1933719112442246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112442246

Keywords

Navigation