Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proteasome inhibitors: antitumor effects and beyond

Abstract

Proteasome inhibitors are emerging as effective drugs for the treatment of multiple myeloma and possibly certain subtypes of non-Hodgkin's lymphoma. Bortezomib (Velcade) is the first proteasome inhibitor proven to be clinically useful and will soon be followed by a second generation of small molecule inhibitors with improved pharmacological properties. Although it is now understood that certain types of malignancies have an exquisite dependence on a functional proteasome for their survival, the underlying reason(s) remain unclear as of now. In this context, addiction to nuclear factor-κB (NF-κB)-induced survival signals, activation of the unfolded protein response as well as a reduced proteasomal activity in differentiated plasma cells have all been proposed to justify proteasome inhibitors' activity in susceptible tissues. In addition to their anticancer properties, bortezomib and related drugs modulate inflammatory and immune responses by affecting function and survival of immune cells such as lymphocytes and dendritic cells. The present review offers an overview of the biological effects that have been involved in proteasome inhibitors' antitumor activity and suggests prospective future applications for these drugs based on their recently characterized anti-inflammatory and immunomodulatory effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mani A, Gelmann EP . The ubiquitin–proteasome pathway and its role in cancer. J Clin Oncol 2005; 23: 4776–4789.

    Article  CAS  Google Scholar 

  2. Adams J . The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4: 349–360.

    Article  CAS  Google Scholar 

  3. Adams J . The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004; 5: 417–421.

    Article  CAS  Google Scholar 

  4. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123: 773–786.

    Article  CAS  Google Scholar 

  5. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell 2005; 8: 407–419.

    Article  CAS  Google Scholar 

  6. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  Google Scholar 

  7. Salceda S, Caro J . Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin–proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272: 22642–22647.

    Article  CAS  Google Scholar 

  8. Nakayama KI, Nakayama K . Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006; 6: 369–381.

    Article  CAS  Google Scholar 

  9. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kB. Nature 2003; 424: 797–801.

    Article  CAS  Google Scholar 

  10. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G . The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801–805.

    Article  CAS  Google Scholar 

  11. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G . CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424: 793–796.

    Article  CAS  Google Scholar 

  12. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    Article  CAS  Google Scholar 

  13. Leverkus M, Sprick MR, Wachter T, Mengling T, Baumann B, Serfling E et al. Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol Cell Biol 2003; 23: 777–790.

    Article  CAS  Google Scholar 

  14. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A et al. The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 2003; 102: 303–310.

    Article  CAS  Google Scholar 

  15. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH . Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 2003; 100: 9946–9951.

    Article  CAS  Google Scholar 

  16. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D . The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 2006; 107: 257–264.

    Article  CAS  Google Scholar 

  17. Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K et al. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 2004; 64: 7500–7506.

    Article  CAS  Google Scholar 

  18. Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 2006; 66: 184–191.

    Article  CAS  Google Scholar 

  19. Cenci S, Mezghrani A, Cascio P, Bianchi G, Cerruti F, Fra A et al. Progressively impaired proteasomal capacity during terminal plasma cell differentiation. EMBO J 2006; 25: 1104–1113.

    Article  CAS  Google Scholar 

  20. Nencioni A, Hua F, Dillon CP, Yokoo R, Scheiermann C, Cardone MH et al. Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood 2005; 105: 3255–3262.

    Article  CAS  Google Scholar 

  21. Nencioni A, Wille L, Dal Bello G, Boy D, Cirmena G, Wesselborg S et al. Cooperative cytotoxicity of proteasome inhibitors and tumor necrosis factor-related apoptosis-inducing ligand in chemoresistant Bcl-2-overexpressing cells. Clin Cancer Res 2005; 11: 4259–4265.

    Article  CAS  Google Scholar 

  22. Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M . Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 2000; 75: 2288–2297.

    Article  CAS  Google Scholar 

  23. Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT . Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 2005; 65: 3828–3836.

    Article  CAS  Google Scholar 

  24. Smolewski P, Duechler M, Linke A, Cebula B, Grzybowska-Izydorczyk O, Shehata M et al. Additive cytotoxic effect of bortezomib in combination with anti-CD20 or anti-CD52 monoclonal antibodies on chronic lymphocytic leukemia cells. Leukemia Res 2006; 18 April [E-pub ahead of print].

  25. Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S . The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 2003; 102: 3765–3774.

    Article  CAS  Google Scholar 

  26. Pei XY, Dai Y, Grant S . Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004; 10: 3839–3852.

    Article  CAS  Google Scholar 

  27. David E, Sun SY, Waller EK, Chen J, Khuri FR, Lonial S . The combination of the farnesyl transferase inhibitor lonafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 2005; 106: 4322–4329.

    Article  CAS  Google Scholar 

  28. Dai Y, Rahmani M, Grant S . Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene 2003; 22: 7108–7122.

    Article  CAS  Google Scholar 

  29. Nawrocki ST, Carew JS, Dunner Jr K, Boise LH, Chiao PJ, Huang P et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 2005; 65: 11510–11519.

    Article  CAS  Google Scholar 

  30. Nencioni A, Garuti A, Schwarzenberg K, Cirmena G, Dal Bello G, Rocco I et al. Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells. Eur J Immunol 2006; 36: 681–689.

    Article  CAS  Google Scholar 

  31. Mimnaugh EG, Xu W, Vos M, Yuan X, Isaacs JS, Bisht KS et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004; 3: 551–566.

    Article  CAS  Google Scholar 

  32. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006; 107: 1092–1100.

    Article  CAS  Google Scholar 

  33. Derouet M, Thomas L, Cross A, Moots RJ, Edwards SW . Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. J Biol Chem 2004; 279: 26915–26921.

    Article  CAS  Google Scholar 

  34. Scagliotti G . Proteasome inhibitors in lung cancer. Crit Rev Oncol Hematol 2006; 58: 177–189.

    Article  Google Scholar 

  35. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–2617.

    Article  CAS  Google Scholar 

  36. Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 2004; 127: 165–172.

    Article  CAS  Google Scholar 

  37. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498.

    Article  CAS  Google Scholar 

  38. Musto P, Falcone A, Sanpaolo G, Guglielmelli T, Zambello R, Balleari E et al. Bortezomib (Velcade) for progressive myeloma after autologous stem cell transplantation and thalidomide. Leukemia Res 2006; 30: 283–285.

    Article  CAS  Google Scholar 

  39. Orlowski RZ, Voorhees PM, Garcia RA, Hall MD, Kudrik FJ, Allred T et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005; 105: 3058–3065.

    Article  CAS  Google Scholar 

  40. Berenson JR, Yang HH, Sadler K, Jarutirasarn SG, Vescio RA, Mapes R et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 2006; 24: 937–944.

    Article  CAS  Google Scholar 

  41. Jagannath S, Durie BG, Wolf J, Camacho E, Irwin D, Lutzky J et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005; 129: 776–783.

    Article  CAS  Google Scholar 

  42. Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M et al. PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 2005; 129: 755–762.

    Article  CAS  Google Scholar 

  43. O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M et al. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma. J Clin Oncol 2005; 23: 676–684.

    Article  CAS  Google Scholar 

  44. Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol 2005; 23: 667–675.

    Article  CAS  Google Scholar 

  45. Younes A, Pro B, Fayad L . Experience with bortezomib for the treatment of patients with relapsed classical Hodgkin lymphoma. Blood 2006; 107: 1731–1732.

    Article  CAS  Google Scholar 

  46. Voorhees PM, Orlowski RZ . The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 2006; 46: 189–213.

    Article  CAS  Google Scholar 

  47. Richardson PG, Mitsiades C, Hideshima T, Anderson KC . Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 2006; 57: 33–47.

    Article  CAS  Google Scholar 

  48. Wu J . On the role of proteasomes in cell biology and proteasome inhibition as a novel frontier in the development of immunosuppressants. Am J Transplant 2002; 2: 904–912.

    Article  CAS  Google Scholar 

  49. Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS et al. Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 1998; 95: 15671–15676.

    Article  CAS  Google Scholar 

  50. Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke WH . Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Invest 2002; 109: 671–679.

    Article  CAS  Google Scholar 

  51. Vanderlugt CL, Rahbe SM, Elliott PJ, Dal Canto MC, Miller SD . Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmun 2000; 14: 205–211.

    Article  CAS  Google Scholar 

  52. Luo H, Wu Y, Qi S, Wan X, Chen H, Wu J . A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation 2001; 72: 196–202.

    Article  CAS  Google Scholar 

  53. Sun K, Welniak LA, Panoskaltsis-Mortari A, O'Shaughnessy MJ, Liu H, Barao I et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA 2004; 101: 8120–8125.

    Article  CAS  Google Scholar 

  54. Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR . NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 2006; 107: 827–834.

    Article  CAS  Google Scholar 

  55. Sun K, Wilkins DE, Anver MR, Sayers TJ, Panoskaltsis-Mortari A, Blazar BR et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood 2005; 106: 3293–3299.

    Article  CAS  Google Scholar 

  56. Blanco B, Perez-Simon JA, Sanchez-Abarca LI, Carvajal-Vergara X, Mateos J, Vidriales B et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood 2006; 107: 3575–3583.

    Article  CAS  Google Scholar 

  57. Lanzavecchia A, Sallusto F . Regulation of T cell immunity by dendritic cells. Cell 2001; 106: 263–266.

    Article  CAS  Google Scholar 

  58. Bayry J, Thirion M, Delignat S, Misra N, Lacroix-Desmazes S, Kazatchkine MD et al. Dendritic cells and autoimmunity. Autoimmun Rev 2004; 3: 183–187.

    Article  Google Scholar 

  59. Chen M, Wang YH, Wang Y, Huang L, Sandoval H, Liu YJ et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science 2006; 311: 1160–1164.

    Article  CAS  Google Scholar 

  60. Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grunebach F et al. The proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood 2006; 108: 551–558.

    Article  CAS  Google Scholar 

  61. Chromik J, Schnurer E, Georg Meyer R, Wehler T, Tuting T, Wolfel T et al. Proteasome-inhibited dendritic cells demonstrate improved presentation of exogenous synthetic and natural HLA-class I peptide epitopes. J Immunol Methods 2006; 308: 77–89.

    Article  CAS  Google Scholar 

  62. Wong C, Morse M, Nair SK . Induction of primary, human antigen-specific cytotoxic T lymphocytes in vitro using dendritic cells pulsed with peptides. J Immunother 1998; 21 (1): 32–40.

    Article  CAS  Google Scholar 

  63. Phillips JB, Williams AJ, Adams J, Elliott PJ, Tortella FC . Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 2000; 31: 1686–1693.

    Article  CAS  Google Scholar 

  64. Di Napoli M, McLaughlin B . The ubiquitin–proteasome system as a drug target in cerebrovascular disease: therapeutic potential of proteasome inhibitors. Curr Opin Invest Drugs 2005; 6: 686–699.

    CAS  Google Scholar 

  65. Kukan M . Emerging roles of proteasomes in ischemia-reperfusion injury of organs. J Physiol Pharmacol 2004; 55: 3–15.

    CAS  PubMed  Google Scholar 

  66. Kaelin Jr WG . The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 2005; 5: 689–698.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Deutsche Forschungsgemeinschaft (SFB685). AN, FP and AB are supported by the University of Genova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Brossart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nencioni, A., Grünebach, F., Patrone, F. et al. Proteasome inhibitors: antitumor effects and beyond. Leukemia 21, 30–36 (2007). https://doi.org/10.1038/sj.leu.2404444

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404444

Keywords

This article is cited by

Search

Quick links