Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Bone marrow angiogenesis in multiple myeloma

Abstract

Angiogenesis is a constant hallmark of multiple myeloma (MM) progression and has prognostic potential. It is induced by plasma cells via angiogenic factors with the transition from monoclonal gammopathy of undetermined significance (MGUS) to MM, and probably with loss of angiostatic activity on the part of MGUS. The pathophysiology of MM-induced angiogenesis is complex and involves both direct production of angiogenic cytokines by plasma cells and their induction within the microenvironment. The latter are secreted by stromal cells, endothelial cells (EC) and osteoclasts, and promote plasma cell growth, survival and migration, as well as paracrine cytokine secretion and angiogenesis in the bone marrow milieu. Angiogenesis is also supported by inflammatory cells following their recruitment and activation by plasma cells. Finally, circulating EC and endothelial precursor cells (EPC) contribute to the neovascularization, and the presence of EPC suggests that vasculogenesis (new vessel formation from EPC) may also contribute to the full MM vascular tree.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  PubMed  Google Scholar 

  2. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R et al. Bone marrow neovascularization, plasma cell angiogenic potential and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999; 93: 3064–3073.

    CAS  PubMed  Google Scholar 

  3. Rajkumar SV, Kyle RA . Angiogenesis in multiple myeloma. Semin Oncol 2001; 28: 560–564.

    Article  CAS  PubMed  Google Scholar 

  4. Rajikumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undertermined signifcance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 2002; 8: 2210–2216.

    Google Scholar 

  5. Dominici M, Campioni D, Lanza F, Luppi M, Barozzi P, Pauli S et al. Angiogenesis in multiple myeloma: correlation between in vitro endothelial colonies growth (CFU-En) and clinical–biological features. Leukemia 2001; 15: 171–176.

    Article  CAS  PubMed  Google Scholar 

  6. Laroche M, Brousset P, Ludot I, Mazières B, Thiechart M, Attal M . Increased vascularization in myeloma. Eur J Haematol 2001; 66: 89–93.

    Article  CAS  PubMed  Google Scholar 

  7. Moehler TM, Neben K, Ho AD, Goldschmidt H . Angiogenesis in hematologic malignancies. Ann Hematol 2001; 80: 695–705.

    Article  CAS  PubMed  Google Scholar 

  8. Menzel T, Rahman Z, Calleja E, White K, Wilson EL, Wieder R et al. Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukemia and is associated with resistance to fludarabine. Blood 1996; 87: 1056–1063.

    CAS  PubMed  Google Scholar 

  9. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001; 15: 1950–1961.

    Article  CAS  PubMed  Google Scholar 

  10. Colla S, Morandi F, Lazzaretti M, Polistena P, Svaldi M, Coser P et al. Do human myeloma cells directly produce basic FGF? Blood 2003; 102: 3071–3073.

    Article  CAS  PubMed  Google Scholar 

  11. Bellamy WT, Richter L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematological malignancies. Blood 1999; 59: 728–733.

    CAS  Google Scholar 

  12. Podar K, Tai Y-T, Davies FE, Lentzsch S, Sattler M, Hideshima T et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98: 428–435.

    Article  CAS  PubMed  Google Scholar 

  13. Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 2003; 88: 176–185.

    CAS  PubMed  Google Scholar 

  14. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R et al. Expression of VEGF and its receptors by myeloma cells. Leukemia 2003; 17: 2025–2031.

    Article  CAS  PubMed  Google Scholar 

  15. Loïc V, Jin DK, Karajannis MA, Shido K, Hooper AT, Rashbaum WK et al. Fetal Stromal-Dependent Paracrine and Intracrine Vascular Endothelial Growth Factor-A/Vascular Endothelial Growth Factor Receptor-1 Signaling Promotes Proliferation and Motility of Human Primary Myeloma Cells. Cancer Res 2005; 65: 3185–3192.

    Article  Google Scholar 

  16. Van Valckenborgh E, De Raeve H, Devy L, Blacher S, Munaut C, Noël A et al. Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo. Br J Cancer 2002; 86: 796–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Børset M, Lien E, Espevik T, Helseth E, Waage A, Sundan A . Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-MET in human myeloma cell lines. J Biol Chem 1996; 271: 24655–24661.

    Article  PubMed  Google Scholar 

  18. Børset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A . Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996; 88: 3998–4004.

    PubMed  Google Scholar 

  19. Seidel C, Børset M, Turesson I, Abildgaard N, Sundan A, Waage A . Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood 1998; 91: 806–812.

    CAS  PubMed  Google Scholar 

  20. Di Raimondo F, Azzaro MP, Palumbo GA, Bagnato S, Giustolisi G, Floridia PM et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 2000; 85: 800–805.

    CAS  PubMed  Google Scholar 

  21. Shapiro VS, Mollenauer MN, Weiss A . Endogenous CD28 expressed on myeloma cells up-regulates interleukin-8 production: implications for multiple myeloma progression. Blood 2001; 98: 187–193.

    Article  CAS  PubMed  Google Scholar 

  22. Hallek M, Bergsagel PL, Anderson KC . Multiple myeloma. Increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21.

    CAS  PubMed  Google Scholar 

  23. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C et al. Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 2003; 102: 638–645.

    Article  CAS  PubMed  Google Scholar 

  24. Pellegrino A, Ria R, Di Pietro G, Cirulli T, Surico G, Pennisi A et al. Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells. Br J Haematol 2005; 129: 248–256.

    Article  CAS  PubMed  Google Scholar 

  25. Munshi NC, Hideshima T, Carrasco D, Shammas M, Auclair D, Davies F et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 2004; 103: 1799–1806.

    Article  CAS  PubMed  Google Scholar 

  26. Colla S, Morandi F, Lazzaretti M, Rizzato R, Lunghi P, Bonomini S et al. Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma. Leukemia 2005, Advance on line publication, 6 October 2005.

  27. Cheriyath V, Hussein MA . Osteopontin, angiogenesis and multiple myeloma. Leukemia 2005; advance online publication, 6 October 2005.

  28. Vacca A, Ribatti D, Roccaro AM, Frigeri A, Dammacco F . Bone marrow angiogenesis in patients with active multiple myeloma. Semin Oncol 2001; 28: 543–550.

    Article  CAS  PubMed  Google Scholar 

  29. Asosingh K, De Raeve H, Menu E, Van Riet I, van Mark E, Van Camp B et al. Angiogenic switch during 5T2MM murine myeloma tumorigenesis; role of CD45 heterogeneity. Blood 2004; 103: 3131–3137.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK et al. Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 2004; 104: 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  31. Vacca A, Ribatti D, Ria R, Pellegrino A, Bruno M, Merchionne F et al. Proteolytic activity of human lymphoid tumor cells. Correlation with tumor progression. Dev Immunol 2000; 7: 77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barillé S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 1997; 90: 1649–1655.

    PubMed  Google Scholar 

  33. Vacca A, Ria R, Presta M, Ribatti D, Iurlaro M, Merchionne F et al. αVβ3 integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp Hematol 2001; 29: 993–1003.

    Article  CAS  PubMed  Google Scholar 

  34. Podar K, Tai Y-T, Lin BK, Narsimhan RP, Sattler M, Kijma T et al. Vascular endothelial growth factor (VEGF)-induced migration of multiple myeloma cells is associated with β1-integrin- and PI3-kinase-dependent PKCα activation. J Biol Chem 2002; 277: 7875–7881.

    Article  CAS  PubMed  Google Scholar 

  35. Vanderkerken K, De Greef C, Asosingh K, Arteta B, De Veerman M, Vande Broek I et al. Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse. Br J Cancer 2000; 82: 953–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Menu E, Asosingh K, Van Riet I, Croucher P, Van Camp B, Vanderkerken K . Myeloma cells (5TMM) and their interactions with the marrow microenvironment. Blood Cells Mol Dis 2004; 33: 111–119.

    Article  PubMed  Google Scholar 

  37. Vacca A, Ria R, Semeraro F, Merchionne F, Coluccia M, Boccarelli A et al. Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 2003; 102: 3340–3348.

    Article  CAS  PubMed  Google Scholar 

  38. Ria R, Vacca A, Russo F, Cirulli F, Massaia M, Tosi P et al. A VEGF-dependent autocrine loop mediates proliferation and capillarogenesis in bone marrow endothelial cells of patients with multiple myeloma. Thromb Haemost 2004; 92: 1438–1445.

    Article  CAS  PubMed  Google Scholar 

  39. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004; 351: 250–259.

    Article  CAS  PubMed  Google Scholar 

  40. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 2005; 23: 5334–5346.

    Article  CAS  PubMed  Google Scholar 

  41. Ribatti D, Nico B, Crivellato E, Vacca A . Endothelial progenitor cells in health and disease. Histol Histopathol 2005; 20: 1351–1358.

    CAS  PubMed  Google Scholar 

  42. Zhang H, Vakil V, Braunstein M, Smith ELP, Maroney J, Chen L et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 2005; 105: 3286–3294.

    Article  CAS  PubMed  Google Scholar 

  43. Kuehl WM, Bersagel BL . Multiple myeloma: evolving genetic events and host interactions. Nature Rev Cancer 2002; 2: 175–187.

    Article  CAS  Google Scholar 

  44. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mester RM et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000; 95: 2630–2636.

    CAS  PubMed  Google Scholar 

  45. Tai YT, Podar K, Gupta D, Lin B, Young G, Akiyama M et al. CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 2002; 99: 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  46. Asosingh K, De Raeve H, de Ridder M, Storme GA, Willems A, Van Riet I et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 2005; 90: 810–817.

    CAS  PubMed  Google Scholar 

  47. Ribatti D, Crivellato E, Roccaro AM, Ria R, Vacca A . Mast cell contribution to angiogenesis related to tumor progression. Clin Exp Allergy 2004; 34: 1660–1664.

    Article  CAS  PubMed  Google Scholar 

  48. Gordon JR, Galli SJ . Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature 1990; 346: 274–276.

    Article  CAS  PubMed  Google Scholar 

  49. Moller A, Lippert U, Lessmann D, Kolde G, Hanrann K, Welker P et al. Human mast cells produce IL-8. J Immunol 1993; 151: 3261–3266.

    CAS  PubMed  Google Scholar 

  50. Grutzkau A, Kruger-Krasagakes S, Baumeister H, Baumeister H, Schwartz C, Kogel H et al. Synthesis, storage and release of vascular endothelial growth factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 1998; 9: 875–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwartz LB, Lewis RA, Austen KF . Tryptase from human pulmonary mast cells: purification and characterization. J Biol Chem 1981; 256: 11939–11943.

    CAS  PubMed  Google Scholar 

  52. Sayama S, Iozzo RV, Lazarus GS, Schechter NM . Human skin chymotrypsin-like proteinase chymase. Subcellular localization to mast cell granules and interaction with heparin and other glycosaminoglycans. J Biol Chem 1987; 262: 6808–6815.

    CAS  PubMed  Google Scholar 

  53. Ribatti D, Vacca A, Nico B, Quondamatteo F, Ria R, Minischetti M et al. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 1999; 79: 451–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yaccoby S, Barlogie B, Epstein J . Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 1998; 92: 2908–2913.

    CAS  PubMed  Google Scholar 

  55. Nakayama T, Yao L, Tosato G . Mast cell-derived angiopietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 2004; 114: 1317–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispensieri A, Lacy MQ et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6: 3111–3116.

    CAS  PubMed  Google Scholar 

  57. Sezer O, Niemoller K, Eucker J, Jakob C, Kaufmann O, Zavrski I et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 2000; 79: 574–577.

    Article  CAS  PubMed  Google Scholar 

  58. Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke KD et al. Seum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 2001; 66: 83–88.

    Article  CAS  PubMed  Google Scholar 

  59. Niemoller K, Jakob C, Heider V, Zavrski I, Eucker J, Kaufmann O et al. Bone marrow angiogenesis and its correlation with other disease characteristics in multiple myeloma in stage I versus stage II-III. J Cancer Res Clin Oncol 2003; 129: 234–238.

    PubMed  Google Scholar 

  60. Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L et al. Prognostic value of angiogenesis in solitary bone plasmocytoma. Blood 2003; 101: 1715–1717.

    Article  CAS  PubMed  Google Scholar 

  61. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R et al. Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant 2004; 34: 235–239.

    Article  CAS  PubMed  Google Scholar 

  62. Rajkumar SV, Gertz MA, Lacy MQ, Dispenzieri A, Fonseca R, Geyer SM et al. Thalidomide as initial therapy for early-stage myeloma. Leukemia 2003; 17: 2237–2238.

    Article  Google Scholar 

  63. Ribatti D, Vacca A . Therapeutic renaissance of thalidomide in the treatment of haematological maligancies. Leukemia 2005; 19: 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  64. Singhal S, Metha J, Desijan R, Ayers D, Robertson P, Eddleman P et al. Antitumor activity of thalidomide in refractory multiple myeloma. New Engl J Med 1999; 341: 1565–1571.

    Article  CAS  PubMed  Google Scholar 

  65. Kumar S, Witzig TE, Dispenzieri A, Lacy MQ, Wellik LE, Fonseca R et al. Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 2004; 18: 624–627.

    Article  CAS  PubMed  Google Scholar 

  66. Richardson PG, Schlossman RL, Weller E, Hideshima T, Mitsiades C, Davies F et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002; 100: 3063–3067.

    Article  CAS  PubMed  Google Scholar 

  67. Kumar S, Raje N, Hideshima T, Ishitsuka K, Roccaro A, Shiraishi N et al. Antimyeloma activity of two novel N-substituted and tetrafluorinated thaliodmide analogs. Leukemia 2005; 19: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC, National and Regional Funds), Milan, Ministry for Education, the Universities and Research (Project CARSO n. 72/2 and FIRB) and Ministry for Health – Regione Puglia (grant BS2 and ‘Convenzione n. 131/Ricerca Finalizzata IRCCS’), Rome, and Fondazione Italiana per la Lotta al Neuroblastoma, Genoa, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ribatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacca, A., Ribatti, D. Bone marrow angiogenesis in multiple myeloma. Leukemia 20, 193–199 (2006). https://doi.org/10.1038/sj.leu.2404067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404067

Keywords

This article is cited by

Search

Quick links