Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Myeloma

Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment

Abstract

The immunological bone marrow (BM) microenvironment plays a major role in controlling growth and survival of clonal plasma cells (PC); this might translate into different patterns of expression of molecules involved in immune responses on PC from different types of monoclonal gammopathies (MG). We have studied the expression of a group of nine such molecules on both BMPC and the plasma of 61 newly diagnosed MG patients (30 MG of undetermined significance (MGUS), 27 multiple myeloma (MM) and four plasma cell leukemia (PCL)) and five normal individuals. Clonal PC from all MG displayed significantly increased levels of CD56, CD86 and CD126, and decreased amounts of CD38 (P<0.001). Additionally, HLA-I and β2-microglobulin were abnormally highly expressed in MGUS, while CD40 expression was decreased in MM and PCL (P<0.05). Interestingly, a progressive increase in the soluble levels of β2-microglobulin was found from MGUS to MM and PCL patients (P=0.03). In contrast, all groups showed similar surface and soluble amounts of CD126, CD130 and CD95, except for increased soluble levels of CD95 observed in PCL. Overall, those phenotypic differences are consistent with increased antigen presentation and costimulatory capacities in MGUS, which progressively deteriorate in malignant MG (MM and PCL).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kyle RA . The monoclonal gammopathies. Clin Chem 1994; 40: 2154–2161.

    CAS  PubMed  Google Scholar 

  2. The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the international myeloma group. Br J Haematol 2003; 121: 749–757.

  3. Kyle RA . Monoclonal gammopathies of undetermined significance. Baillerés Clin Haematol 1995; 8: 761–781.

    Article  CAS  Google Scholar 

  4. Ocqueteau M, Orfao A, Almeida J, Bladé J, Gonzalez M, García-Sanz R et al. Immunophenotypic characteristics of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 1998; 152: 1655–1664.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sezer O, Heider U, Zarski I, Possinger K . Differentiation of monoclonal gammopathy of undetermined significance and multiple myeloma using flow cytometric characteristics of plasma cells. Haematologica 2001; 86: 837–843.

    CAS  PubMed  Google Scholar 

  6. Costello R, Sainty D, Bouabdallah R, Fermard JP, Delmer A, Diviné M et al. Primary plasma cell leukaemia: a report of 18 cases. Leukemia Res 2001; 25: 103–107.

    Article  CAS  Google Scholar 

  7. Garcia-Sanz R, Orfao A, Gonzalez M, Tabernero MD, Blade J, Moro MJ et al. Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood 1999; 93: 1032–1037.

    CAS  PubMed  Google Scholar 

  8. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC . Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 607–618.

    Article  CAS  PubMed  Google Scholar 

  9. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA et al. Genomic abnormalities in monoclonal gammopathies of undetermined significance. Blood 2002; 100: 1417–1424.

    CAS  PubMed  Google Scholar 

  10. Kuehl WM, Bergsagel PL . Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002; 2: 175–187.

    Article  CAS  PubMed  Google Scholar 

  11. Grigorieva I, Thomas X, Epstein J . The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone. Exp Hematol 1998; 6: 597–603.

    Google Scholar 

  12. Nefedova Y, Landowski TH, Dalton WS . Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanism. Leukemia 2003; 17: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  13. Ghia P, Granziero L, Chilosi M, Caligaris-Cappio F . Chronic B cell malignancies and bone marrow microenvironment. Semin Cancer Biol 2002; 12: 149–155.

    Article  PubMed  Google Scholar 

  14. San Miguel JF, Garcia-Sanz R, Gonzalez M, Moro MJ, Hernandez JM, Ortega F et al. A new staging system for multiple myeloma based on the number of S-phase plasma cells. Blood 1995; 85: 448–455.

    CAS  PubMed  Google Scholar 

  15. Hallek M, Bergsagel PL, Anderson K . Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21.

    CAS  PubMed  Google Scholar 

  16. Yi Q, Dabadghao S, Östeborg A, Bergenbrant S, Holm G . Myeloma bone marrow plasma cells: evidence for their capacity as antigen-presenting cells. Blood 1997; 90: 1960–1967.

    CAS  PubMed  Google Scholar 

  17. Tarte K, Zhang XG, Legouffe E, Hertog C, Mehtali M, Rossi JF et al. Induced expression of B7-1 on myeloma cells following retroviral gene transfer results in tumor-specific recognition by cytotoxic T cells. J Immunol 1999; 163: 514–524.

    CAS  PubMed  Google Scholar 

  18. Westendorf JJ, Ahmann GJ, Armitage RJ, Spriggs MK, Lust JA, Greipp PR et al. CD40 expression in malignant plasma cells. Role in stimulation of autocrine IL-6 secretion by a human myeloma cell line. J Immunol 1994; 152: 117–128.

    CAS  PubMed  Google Scholar 

  19. Brown RD, Pope B, Yuen E, Gibson J, Joshua DE . The expression of T cell related costimulatory molecules in multiple myeloma. Leukemia Lymphoma 1998; 31: 379–384.

    Article  CAS  PubMed  Google Scholar 

  20. Pellat-Deceunyck C, Bataille R, Robillard N, Harousseau JL, Rapp MJ, Juge-Morineau N et al. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 1994; 84: 2597–2603.

    Google Scholar 

  21. Berenson JR, Sjak-Shie NN, Vescio RA . The role of human and viral cytokines in the pathogenesis of multiple myeloma. Semin Cancer Biol 2000; 10: 383–391.

    Article  CAS  PubMed  Google Scholar 

  22. Pope B, Brown D, Gibson J, Yuen E, Joshua DE . B7-2-positive myeloma: incidence, clinical characteristics, prognostic significance, and implications for tumour immunotherapy. Blood 2000; 96: 1274–1279.

    CAS  PubMed  Google Scholar 

  23. Perosa F, Luccarelli G, Prete M, Ferrone S, Dammacco F . Increased serum levels of β2-microglobulin-free HLA class I heavy chain in multiple myeloma. Br J Haematol 1999; 106: 987–994.

    Article  CAS  PubMed  Google Scholar 

  24. Bataille R, Grenier J, Sany J . Beta-2-microglobulin in myeloma: optimal use for staging, prognosis, and treatment – a prospective study of 160 patients. Blood 1984; 63: 468–476.

    CAS  PubMed  Google Scholar 

  25. Rawstron AC, Fenton JAL, Ashcroft JA, English A, Jones RA, Richards SJ et al. The interleukin receptor alpha-chain (CD126) is expressed by neoplastic but not normal plasma cells. Blood 2000; 96: 3880–3886.

    CAS  PubMed  Google Scholar 

  26. Barillé S, Thabard W, Robillard N, Moreau P, Pineau D, Harousseau JL et al. CD130 rather than CD126 expression is associated with disease activity in multiple myeloma. Br J Haematol 1999; 106: 532–535.

    Article  PubMed  Google Scholar 

  27. Stasi R, Brunetti M, Parma A, Di Giulio C, Terzoli E, Pagano A . The prognostic value of soluble interleukin-6 receptor in patients with multiple myeloma. Cancer 1998; 82: 1860–1866.

    Article  CAS  PubMed  Google Scholar 

  28. Hata H, Matsuzaki H, Takeya M, Yoshida M, Sonoki T, Nagasaki A et al. Expression of Fas7Apo-1 (CD95) and apoptosis in tumor cells from patients with plasma cell disorders. Blood 1995; 86: 1939–1945.

    CAS  PubMed  Google Scholar 

  29. Nocito M, Montalbán C, González-Porque P, Villar ML . Increased soluble serum HLA class I antigens in patients with lymphoma. Hum Immunol 1997; 58: 106–111.

    Article  CAS  PubMed  Google Scholar 

  30. Hooper NM, Karran EH, Turner AJ . Membrane protein secretases. Biochem J 1997; 321: 265–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhodapkar MV, Krasovsky J, Osman K, Geller MD . Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 2003; 11: 1753–1757.

    Article  Google Scholar 

  32. Spaggiari GM, Contini P, Dondero A, Carosio R, Puppo F, Indiveri F et al. Soluble HLA clas I induces NK cell apoptosis upon the engagement of killer-activating HLA class I receptors through FasL–Fas interaction. Blood 2002; 100: 4098–4107.

    Article  CAS  PubMed  Google Scholar 

  33. Puppo F, Contini P, Ghio M, Brenci S, Scudeletti M, Filaci G et al. Soluble human MHC class I molecules induce soluble Fas ligand secretion and trigger apoptosis in activated CD8+ Fas (CD95+) T lymphocytes. Int Immunol 2000; 12: 195–203.

    Article  CAS  PubMed  Google Scholar 

  34. Xie J, Wang Y, Freeman III ME, Bartologie B, Yi Q . β2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of functional dendritic cells. Blood 2003; 101: 4005–4012.

    Article  CAS  PubMed  Google Scholar 

  35. Bubenik J . MHC class I down-regulation: tumor escape from immune surveillance? Int J Oncol 2004; 25: 487–491.

    CAS  PubMed  Google Scholar 

  36. Dunn GP, Old LJ, Schreiber RD . The three es of cancer immunoediting. Annu Rev Immunol 2004; 22: 329–360.

    Article  CAS  PubMed  Google Scholar 

  37. Bashey A, Cantwell MJ, Kipps TJ . Adenovirus transduction to effect CD40 improves the immune stimulatory activity of myeloma cells. Br J Haematol 2002; 118: 506–513.

    Article  CAS  PubMed  Google Scholar 

  38. Bergamo A, Bataille R, Pellat-Deceunyck C . CD40 and CD95 induce programmed cell death in the human myeloma cell line XG2. Br J Haematol 1997; 97: 652–655.

    Article  CAS  PubMed  Google Scholar 

  39. Sojka DK, Donepudi M, Buestone JA, Mokyr MB . Melphalan and other anticancer modalities up-regulate B7-1 gene expression in tumor cells. J Immunol 2000; 164: 6230–6236.

    Article  CAS  PubMed  Google Scholar 

  40. Funaro A, Malavasi F . Human CD38, a surface receptor, an enzyme, an adhesion molecule and not a simple marker. J Biol Regul Homeost Agents 1999; 13: 54–61.

    CAS  PubMed  Google Scholar 

  41. Vallario A, Chilosi M, Adami F, Motagana L, Deaglio S, Malavasi F et al. Human myeloma cells express the CD38 ligand CD31. Br J Haematol 1999; 105: 441–444.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263: 1759–1762.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A Orfao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Andrés, M., Almeida, J., Martín-Ayuso, M. et al. Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia 19, 449–455 (2005). https://doi.org/10.1038/sj.leu.2403647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403647

Keywords

This article is cited by

Search

Quick links