Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Expression of VEGF and its receptors by myeloma cells

Abstract

Angiogenesis or new vessel formation is an essential component in the growth and progression of neoplasms and there is growing evidence of its importance in hematological malignancies including multiple myeloma (MM). Vascular endothelial growth factor (VEGF) is believed to play a role in tumor angiogenesis. We studied the expression of VEGF and its receptors (VEGFR1 or Flt-1 and VEGFR2 or Flk-1/KDR) by myeloma cell lines and plasma cells isolated from patients, using different methods. VEGF expression by the plasma cells was demonstrated by immunohistochemistry in 18 of 20 patients with MM. Enzyme-linked immunosorbent assay demonstrated VEGF secretion in all six different myeloma cell lines studied. Five patient marrow samples and seven different myeloma cell lines were then studied for VEGF mRNA expression by reverse-transcriptase polymerase chain reaction (RT-PCR), which was positive in all. We further evaluated the expression of both VEGFR1 and VEGFR2 in different myeloma cell lines and five sorted myeloma bone marrow samples by RT-PCR. All the myeloma cell lines expressed VEGFR1 and three of the cell lines expressed VEGFR2. VEGFR1 expression was detected in all and VEGFR2 in all but one of the sorted marrow samples. Increased expression of VEGF by the myeloma cells taken in the context of the suspected prognostic value of marrow angiogenesis suggests a pathogenetic role for this cytokine and presence of its receptors on myeloma cells points toward an autocrine mechanism. Demonstration of the presence of VEGFR2 in our study provides a potential biological explanation for the preclinical activity observed with VEGFR2 inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jemal A, Thomas A, Murray T, Thun M . Cancer statistics. CA Cancer J Clin 2002; 52: 23–47.

    Article  Google Scholar 

  2. Kyle RA . Long-term survival in multiple myeloma. N Engl J Med 1983; 308: 314–316.

    Article  CAS  Google Scholar 

  3. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996; 335: 91–97.

    Article  CAS  Google Scholar 

  4. Folkman J . Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757–1763.

    Article  CAS  Google Scholar 

  5. Sezer O, Niemoller K, Eucker J, Jakob C, Kaufmann O, Zavrski I et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 2000; 79: 574–577.

    Article  CAS  Google Scholar 

  6. Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp PR . Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia 1999; 13: 469–472.

    Article  CAS  Google Scholar 

  7. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispensieri A, Lacy MQ et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6: 3111–3116.

    CAS  PubMed  Google Scholar 

  8. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  Google Scholar 

  9. Schneider P, Jerome MV, Paysant J, Soria PC, Vannier JP . The role of angiogenesis in leukemia proliferation. Am J Pathol 1999; 155: 1007–1008.

    CAS  PubMed  Google Scholar 

  10. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245.

    CAS  PubMed  Google Scholar 

  11. Mesa RA, Hanson CA, Rajkumar SV, Schroeder G, Tefferi A . Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood 2000; 96: 3374–3380.

    CAS  PubMed  Google Scholar 

  12. Bellamy WT, Richter L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728–733.

    CAS  PubMed  Google Scholar 

  13. Di Raimondo F, Azzaro MP, Palumbo G, Bagnato S, Giustolisi G, Floridia P et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 2000; 85: 800–805.

    CAS  PubMed  Google Scholar 

  14. Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke K et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 2001; 66: 83–88.

    Article  CAS  Google Scholar 

  15. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood 2000; 95: 2630–2636.

    CAS  PubMed  Google Scholar 

  16. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98: 428–435.

    Article  CAS  Google Scholar 

  17. Hitzler JK, Martinez-Valdez H, Bergsagel DB, Minden MD, Messner HA . Role of interleukin-6 in the proliferation of human multiple myeloma cell lines OCI-My 1 to 7 established from patients with advanced stage of the disease. Blood 1991; 78: 1996–2004.

    CAS  PubMed  Google Scholar 

  18. Westendorf JJ, Ahmann GJ, Greipp PR, Witzig TE, Lust JA, Jelinek DF . Establishment and characterization of three myeloma cell lines that demonstrate variable cytokine responses and abilities to produce autocrine interleukin-6. Leukemia 1996; 10: 866–876.

    CAS  PubMed  Google Scholar 

  19. Matsuoka Y, Moore GE, Yagi Y, Pressman D . Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma. Proc Soc Exp Biol Med 1967; 125: 1246–1250.

    Article  CAS  Google Scholar 

  20. Jelinek DF, Ahmann GJ, Greipp PR, Jalal SM, Westendorf JJ, Katzmann JA et al. Coexistence of aneuploid subclones within a myeloma cell line that exhibits clonal immunoglobulin gene rearrangement: clinical implications. Cancer Res 1993; 53: 5320–5327.

    CAS  PubMed  Google Scholar 

  21. Nilsson K, Bennich H, Johansson SG, Ponten J . Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol 1970; 7: 477–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Dvorak HF et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 1993; 143: 1255–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  PubMed  Google Scholar 

  24. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  Google Scholar 

  25. Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 1998; 95: 3609–3614.

    Article  CAS  Google Scholar 

  26. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT . The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989–991.

    Article  CAS  Google Scholar 

  27. Terman BI, Dougher-Vermazen M, Carrion ME, Dimirov D, Armellino DC, Gospodarowicz D et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992; 187: 1579–1586.

    Article  CAS  Google Scholar 

  28. Rajkumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 2002; 8: 2210–2216.

    PubMed  Google Scholar 

  29. Michio K, Toshio H, Tadashi M, Tetsuya T, Yasuhiro H, Koji I et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 1988; 332: 83–85.

    Article  Google Scholar 

  30. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001; 15: 1950–1961.

    Article  CAS  Google Scholar 

  31. Shalaby MR, Waage A, Espevik T . Cytokine regulation of interleukin 6 production by human endothelial cells. Cell Immunol 1989; 121: 372–382.

    Article  CAS  Google Scholar 

  32. Thomas X, Anglaret B, Magaud JP, Epstein J, Archimbaud E . Interdependence between cytokines and cell adhesion molecules to induce interleukin-6 production by stromal cells in myeloma. Leukemia Lymphoma 1998; 32: 107–119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Goldman Philanthropic Partnerships, IL, USA and Grants CA 93842, CA 85818 and CA62242, National Cancer Institute, Bethesda, MD, USA. Dr Rajkumar is a Leukemia and Lymphoma Society of America Translational Research Awardee and is also supported by the Multiple Myeloma Research Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Witzig, T., Timm, M. et al. Expression of VEGF and its receptors by myeloma cells. Leukemia 17, 2025–2031 (2003). https://doi.org/10.1038/sj.leu.2403084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403084

Keywords

This article is cited by

Search

Quick links