Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A comprehensive profile of recurrent glioblastoma

Subjects

Abstract

In spite of relentless efforts to devise new treatment strategies, primary glioblastomas invariably recur as aggressive, therapy-resistant relapses and patients rapidly succumb to these tumors. Many therapeutic agents are first tested in clinical trials involving recurrent glioblastomas. Remarkably, however, fundamental knowledge on the biology of recurrent glioblastoma is just slowly emerging. Here, we review current knowledge on recurrent glioblastoma and ask whether and how therapies change intra-tumor heterogeneity, molecular traits and growth pattern of glioblastoma, and to which extent this information can be exploited for therapeutic decision-making. We conclude that the ability to characterize and predict therapy-induced changes in recurrent glioblastoma will determine, whether, one day, glioblastoma can be contained in a state of chronic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  3. Weller M, Cloughesy T, Perry JR, Wick W . Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro-oncology 2013; 15: 4–27.

    Article  PubMed  Google Scholar 

  4. Marucci G, Fabbri PV, Morandi L, De Biase D, Di Oto E, Tallini G et al. Pathological spectrum in recurrences of glioblastoma multiforme. Pathologica 2015; 107: 1–8.

    CAS  PubMed  Google Scholar 

  5. Kim J, Lee I-H, Cho HJ, Park C-K, Jung Y-S, Kim Y et al. Spatiotemporal Evolution of the Primary Glioblastoma Genome. Cancer Cell 2015; 28: 318–328.

    Article  CAS  PubMed  Google Scholar 

  6. Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 2015; 25: 316–327.

    Article  CAS  PubMed  Google Scholar 

  7. Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C et al. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 2010; 28: 851–862.

    Article  CAS  PubMed  Google Scholar 

  8. Glas M, Rath BH, Simon M, Reinartz R, Schramme A, Trageser D et al. Residual tumor cells are unique cellular targets in glioblastoma. Ann Neurol 2010; 68: 264–269.

    PubMed Central  PubMed  Google Scholar 

  9. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR et al. The somatic genomic landscape of glioblastoma. Cell 2013; 155: 462–477.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014; 343: 189–193.

    Article  CAS  Google Scholar 

  11. Burger PC, Dubois PJ, Schold SC Jr, Smith KR Jr, Odom GL, Crafts DC et al. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 1983; 58: 159–169.

    Article  CAS  PubMed  Google Scholar 

  12. De Bonis P, Anile C, Pompucci A, Fiorentino A, Balducci M, Chiesa S et al. The influence of surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg 2013; 115: 37–43.

    Article  PubMed  Google Scholar 

  13. Van Nifterik KA, Elkhuizen PHM, van Andel RJ, Stalpers LJA, Leenstra S, Lafleur MVM et al. Genetic profiling of a distant second glioblastoma multiforme after radiotherapy: recurrence or second primary tumor? J Neurosurg 2006; 105: 739–744.

    Article  PubMed  Google Scholar 

  14. Reis RM, Herva R, Brandner S, Koivukangas J, Mironov N, Bär W et al. Second primary glioblastoma. J Neuropathol Exp Neurol 2001; 60: 208–215.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez R, Schackert HK, von Kannen S, Lichter P, Joos S, Schackert G . Independent molecular development of metachronous glioblastomas with extended intervening recurrence-free interval. Brain Pathol 2003; 13: 598–607.

    Article  CAS  PubMed  Google Scholar 

  16. Stark AM, Doukas A, Hugo H-H, Mehdorn HM . The expression of mismatch repair proteins MLH1, MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurol Res 2010; 32: 816–820.

    Article  PubMed  Google Scholar 

  17. Stark AM, Witzel P, Strege RJ, Hugo H-H, Mehdorn HM . p53, mdm2, EGFR, and msh2 expression in paired initial and recurrent glioblastoma multiforme. J Neurol Neurosurg Psychiatr 2003; 74: 779–783.

    Article  CAS  Google Scholar 

  18. Martinez R, Setien F, Voelter C, Casado S, Quesada MP, Schackert G et al. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 2007; 28: 1264–1268.

    Article  CAS  PubMed  Google Scholar 

  19. Martinez R, Rohde V, Schackert G . Different molecular patterns in glioblastoma multiforme subtypes upon recurrence. J Neurooncol 2010; 96: 321–329.

    Article  CAS  PubMed  Google Scholar 

  20. Bilzer T, Stavrou D, Wechsler W, Wöhler B, Keiditsch E . Antigen variation in a human glioblastoma: from the primary tumor to the second recurrence, permanent cell line and xenotransplantation tumors. Anticancer Res 1991; 11: 547–553.

    CAS  PubMed  Google Scholar 

  21. Shinsato Y, Furukawa T, Yunoue S, Yonezawa H, Minami K, Nishizawa Y et al. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma. Oncotarget 2013; 4: 2261–2270.

    Article  PubMed  Google Scholar 

  22. Ilhan-Mutlu A, Wöhrer A, Berghoff AS, Widhalm G, Marosi C, Wagner L et al. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens. J Neurooncol 2013; 112: 347–354.

    Article  CAS  PubMed  Google Scholar 

  23. Inda M-M, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24: 1731–1745.

    Article  CAS  PubMed  Google Scholar 

  24. Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 2011; 20: 810–817.

    Article  CAS  Google Scholar 

  25. Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 2012; 109: 3041–3046.

    Article  CAS  PubMed  Google Scholar 

  26. Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013; 110: 4009–4014.

    Article  CAS  PubMed  Google Scholar 

  27. Andor N, Harness JV, Müller S, Mewes HW, Petritsch C . EXPANDS: expanding ploidy and allele frequency on nested subpopulations. Bioinformatics 2014; 30: 50–60.

    Article  CAS  PubMed  Google Scholar 

  28. Cancer Genome Atlas Research Network. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  29. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  30. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501–513.

    Article  CAS  PubMed  Google Scholar 

  32. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5: 67.

    Article  PubMed  Google Scholar 

  33. Liu Q, Nguyen DH, Dong Q, Shitaku P, Chung K, Liu OY et al. Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J Neurooncol 2009; 94: 1–19.

    Article  PubMed  Google Scholar 

  34. Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2011; 2: e200.

    Article  CAS  PubMed  Google Scholar 

  35. Richichi C, Brescia P, Alberizzi V, Fornasari L, Pelicci G . Marker-independent method for isolating slow-dividing cancer stem cells in human glioblastoma. Neoplasia 2013; 15: 840–847.

    Article  CAS  PubMed  Google Scholar 

  36. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H et al. Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain 2011; 134: 1331–1343.

    Article  PubMed  Google Scholar 

  37. Campos B, Gal Z, Baader A, Schneider T, Sliwinski C, Gassel K et al. Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma. J Pathol 2014; 234: 23–33.

    Article  PubMed  Google Scholar 

  38. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488: 522–526.

    Article  CAS  PubMed  Google Scholar 

  39. Campos B, Herold-Mende CC . Insight into the complex regulation of CD133 in glioma. Int J Cancer 2011; 128: 501–510.

    Article  CAS  PubMed  Google Scholar 

  40. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 2008; 14: 123–129.

    Article  CAS  Google Scholar 

  41. Tamura K, Aoyagi M, Ando N, Ogishima T, Wakimoto H, Yamamoto M et al. Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neurosurg 2013; 119: 1145–1155.

    Article  PubMed  Google Scholar 

  42. Pallini R, Ricci-Vitiani L, Montano N, Mollinari C, Biffoni M, Cenci T et al. Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer 2011; 117: 162–174.

    Article  PubMed  Google Scholar 

  43. Qazi MA, Vora P, Venugopal C, McFarlane N, Subapanditha MK, Murty NK et al. A novel stem cell culture model of recurrent glioblastoma. J Neurooncol 2015, e-pub ahead of print 23 October 2015 10.1007/s11060-015-1951-6.

  44. Smets T, Lawson TM, Grandin C, Jankovski A, Raftopoulos C . Immediate post-operative MRI suggestive of the site and timing of glioblastoma recurrence after gross total resection: a retrospective longitudinal preliminary study. Eur Radiol 2013; 23: 1467–1477.

    Article  PubMed  Google Scholar 

  45. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17: 510–522.

    Article  CAS  PubMed  Google Scholar 

  46. Christmann M, Nagel G, Horn S, Krahn U, Wiewrodt D, Sommer C et al. MGMT activity, promoter methylation and immunohistochemistry of pretreatment and recurrent malignant gliomas: a comparative study on astrocytoma and glioblastoma. Int J Cancer 2010; 127: 2106–2118.

    Article  CAS  PubMed  Google Scholar 

  47. Brandes AA, Tosoni A, Franceschi E, Sotti G, Frezza G, Amistà P et al. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation With MGMT promoter methylation status. J Clin Oncol 2009; 27: 1275–1279.

    Article  CAS  PubMed  Google Scholar 

  48. Iwamoto FM, Abrey LE, Beal K, Gutin PH, Rosenblum MK, Reuter VE et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 2009; 73: 1200–1206.

    Article  CAS  PubMed  Google Scholar 

  49. Poulsen HS, Urup T, Michaelsen SR, Staberg M, Villingshøj M, Lassen U . The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients. Cancer Manag Res 2014; 6: 373–387.

    Article  CAS  PubMed  Google Scholar 

  50. Furuta T, Nakada M, Misaki K, Sato Y, Hayashi Y, Nakanuma Y et al. Molecular analysis of a recurrent glioblastoma treated with bevacizumab. Brain Tumor Pathol 2013; 31: 32–39.

    Article  PubMed  Google Scholar 

  51. Mittal D, Gubin MM, Schreiber RD, Smyth MJ . New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 2014; 27: 16–25.

    Article  CAS  PubMed  Google Scholar 

  52. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28: 4722–4729.

    Article  PubMed  Google Scholar 

  53. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SAA, Fack F et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 2011; 108: 3749–3754.

    Article  CAS  Google Scholar 

  54. Sathornsumetee S, Cao Y, Marcello JE, Herndon JE, McLendon RE, Desjardins A et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 2008; 26: 271–278.

    Article  CAS  PubMed  Google Scholar 

  55. Yao X, Ping Y, Liu Y, Chen K, Yoshimura T, Liu M et al. Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-like cells. PLoS ONE 2013; 8: e57188.

    Article  CAS  PubMed  Google Scholar 

  56. Lu-Emerson C, Snuderl M, Kirkpatrick ND, Goveia J, Davidson C, Huang Y et al. Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro-oncology 2013; 15: 1079–1087.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Campos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

Literature review and conception, drafting the article and critical revision, and final approval of the version to be published: BC, LRO, TU, HSP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, B., Olsen, L., Urup, T. et al. A comprehensive profile of recurrent glioblastoma. Oncogene 35, 5819–5825 (2016). https://doi.org/10.1038/onc.2016.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.85

This article is cited by

Search

Quick links