Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells

Abstract

Synovial sarcoma accounts for almost 10% of all soft tissue sarcomas, and its prognosis is poor with 5-year survival rates at 36%. Thus, new treatments and therapeutic targets for synovial sarcoma are required. Tumor-initiating cells have been defined by the ability for self-renewal and multipotent differentiation, and they exhibit higher tumorigenic capacity, chemoresistance and radiation resistance, expecting to be a new therapeutic target. In synovial sarcoma, the presence of such stemness remains largely unclear; thus, we analyzed whether synovial sarcoma possessed tumor-initiating cells and explored specific markers, and we discovered that synovial sarcoma cell lines possessed heterogeneity by way of containing a sphere-forming subpopulation highly expressing NANOG, OCT4 and SOX2. By expression microarray analysis, CXCR4 was identified to be highly expressed in the sphere subpopulation and correlated with stem-cell-associated markers. Inhibition of CXCR4 suppressed the cell proliferation of synovial sarcoma cell lines in vitro. The tumor-initiating ability of CXCR4-positive cells was demonstrated by xenograft propagation assay. CXCR4-positive cells showed higher tumorigenicity than negative ones and possessed both self-renewal and multipotent differentiation ability. Immunohistochemical analysis of 39 specimens of synovial sarcoma patients revealed that CXCR4 strongly correlated with poor prognosis of synovial sarcoma. Thus, we conclude that CXCR4 is the marker of synovial sarcoma-initiating cells, a new biomarker for prognosis and a new potential therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Haldar M, Randall RL, Capecchi MR . Synovial sarcoma: from genetics to genetic-based animal modeling. Clin Orthop Relat Res 2008; 466: 2156–2167.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eid JE, Kung AL, Scully R, Livingston DM . p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell 2000; 102: 839–848.

    Article  CAS  PubMed  Google Scholar 

  3. Ito T, Ouchida M, Ito S, Jitsumori Y, Morimoto Y, Ozaki T et al. SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Lab Invest 2004; 84: 1484–1490.

    Article  CAS  PubMed  Google Scholar 

  4. Nagai M, Tanaka S, Tsuda M, Endo S, Kato H, Sonobe H et al. Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proc Natl Acad Sci USA 2001; 98: 3843–3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsuda M, Watanabe T, Seki T, Kimura T, Sawa H, Minami A et al. Induction of p21(WAF1/CIP1) by human synovial sarcoma-associated chimeric oncoprotein SYT-SSX1. Oncogene 2005; 24: 7984–7990.

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe T, Tsuda M, Makino Y, Ichihara S, Sawa H, Minami A et al. Adaptor molecule Crk is required for sustained phosphorylation of Grb2-associated binder 1 and hepatocyte growth factor-induced cell motility of human synovial sarcoma cell lines. Mol Cancer Res 2006; 4: 499–510.

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe T, Tsuda M, Makino Y, Konstantinou T, Nishihara H, Majima T et al. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res 2009; 19: 638–650.

    Article  CAS  PubMed  Google Scholar 

  8. Minami Y, Kohsaka S, Tsuda M, Yachi K, Hatori N, Tanino M et al. SS18-SSX-regulated miR-17 promotes tumor growth of synovial sarcoma by inhibiting p21WAF1/CIP1. Cancer Sci 2014; 105: 1152–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jordan CT, Guzman ML, Noble M . Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  10. Mohseny AB, Hogendoorn PC . Concise review: mesenchymal tumors: when stem cells go mad. Stem Cells 2011; 29: 397–403.

    Article  CAS  PubMed  Google Scholar 

  11. Adhikari AS, Agarwal N, Wood BM, Porretta C, Ruiz B, Pochampally RR et al. CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res 2010; 70: 4602–4612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F et al. Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J 2011; 25: 2022–2030.

    Article  CAS  PubMed  Google Scholar 

  13. Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM et al. Identification of cancer stem cells in Ewing's sarcoma. Cancer Res 2009; 69: 1776–1781.

    Article  CAS  PubMed  Google Scholar 

  14. Hirotsu M, Setoguchi T, Matsunoshita Y, Sasaki H, Nagao H, Gao H et al. Tumour formation by single fibroblast growth factor receptor 3-positive rhabdomyosarcoma-initiating cells. Br J Cancer 2009; 101: 2030–2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murase M, Kano M, Tsukahara T, Takahashi A, Torigoe T, Kawaguchi S et al. Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. Br J Cancer 2009; 101: 1425–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naka N, Takenaka S, Araki N, Miwa T, Hashimoto N, Yoshioka K et al. Synovial sarcoma is a stem cell malignancy. Stem Cells 2010; 28: 1119–1131.

    CAS  PubMed  Google Scholar 

  17. Perani M, Antonson P, Hamoudi R, Ingram CJ, Cooper CS, Garrett MD et al. The proto-oncoprotein SYT interacts with SYT-interacting protein/co-activator activator (SIP/CoAA), a human nuclear receptor co-activator with similarity to EWS and TLS/FUS family of proteins. J Biol Chem 2005; 280: 42863–42876.

    Article  CAS  PubMed  Google Scholar 

  18. Kadoch C, Crabtree GR . Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 2013; 153: 71–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Su L, Sampaio AV, Jones KB, Pacheco M, Goytain A, Lin S et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 2012; 21: 333–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimura T, Wang L, Tabu K, Nishihara H, Mashita Y, Kikuchi N et al. CD133 negatively regulates tumorigenicity via AKT pathway in synovial sarcoma. Cancer Invest 2012; 30: 390–397.

    Article  CAS  PubMed  Google Scholar 

  21. Liu A, Feng B, Gu W, Cheng X, Tong T, Zhang H et al. The CD133+ subpopulation of the SW982 human synovial sarcoma cell line exhibits cancer stem-like characteristics. Int J Oncol 2013; 42: 1399–1407.

    Article  CAS  PubMed  Google Scholar 

  22. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J . The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20: 1915–1924.

    Article  CAS  PubMed  Google Scholar 

  23. Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR . A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 2007; 11: 375–388.

    Article  CAS  PubMed  Google Scholar 

  24. Chapman MR, Balakrishnan KR, Li J, Conboy MJ, Huang H, Mohanty SK et al. Sorting single satellite cells from individual myofibers reveals heterogeneity in cell-surface markers and myogenic capacity. Integr Biol (Camb) 2013; 5: 692–702.

    Article  CAS  Google Scholar 

  25. Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 2004; 119: 543–554.

    Article  CAS  PubMed  Google Scholar 

  26. Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004; 104: 2643–2645.

    Article  CAS  PubMed  Google Scholar 

  27. Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 2001; 167: 4747–4757.

    Article  CAS  PubMed  Google Scholar 

  28. Hall JM, Korach KS . Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 2003; 17: 792–803.

    Article  CAS  PubMed  Google Scholar 

  29. Kaifi JT, Yekebas EF, Schurr P, Obonyo D, Wachowiak R, Busch P et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 2005; 97: 1840–1847.

    Article  CAS  PubMed  Google Scholar 

  30. Kim SY, Lee CH, Midura BV, Yeung C, Mendoza A, Hong SH et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 2008; 25: 201–211.

    Article  CAS  PubMed  Google Scholar 

  31. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  PubMed  Google Scholar 

  32. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK . Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62: 1832–1837.

    CAS  PubMed  Google Scholar 

  33. Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA et al. Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 2005; 65: 6178–6188.

    Article  CAS  PubMed  Google Scholar 

  34. De Falco V, Guarino V, Avilla E, Castellone MD, Salerno P, Salvatore G et al. Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res 2007; 67: 11821–11829.

    Article  CAS  PubMed  Google Scholar 

  35. Hassan S, Buchanan M, Jahan K, Aguilar-Mahecha A, Gaboury L, Muller WJ et al. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer 2011; 129: 225–232.

    Article  CAS  PubMed  Google Scholar 

  36. Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L et al. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res 2009; 155: 231–236.

    Article  CAS  PubMed  Google Scholar 

  37. Porvasnik S, Sakamoto N, Kusmartsev S, Eruslanov E, Kim WJ, Cao W et al. Effects of CXCR4 antagonist CTCE-9908 on prostate tumor growth. Prostate 2009; 69: 1460–1469.

    Article  CAS  PubMed  Google Scholar 

  38. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 2003; 100: 13513–13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 2004; 64: 8604–8612.

    Article  CAS  PubMed  Google Scholar 

  40. Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 2010; 70: 10411–10421.

    Article  CAS  PubMed  Google Scholar 

  41. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM . Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 2010; 120: 694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saigusa S, Toiyama Y, Tanaka K, Yokoe T, Okugawa Y, Kawamoto A et al. Stromal CXCR4 and CXCL12 expression is associated with distant recurrence and poor prognosis in rectal cancer after chemoradiotherapy. Ann Surg Oncol 2010; 17: 2051–2058.

    Article  PubMed  Google Scholar 

  43. Xu L, Duda DG, di Tomaso E, Ancukiewicz M, Chung DC, Lauwers GY et al. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res 2009; 69: 7905–7910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H . Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 2008; 99: 539–542.

    Article  CAS  PubMed  Google Scholar 

  45. Scala S, Ottaiano A, Ascierto PA, Cavalli M, Simeone E, Giuliano P et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 2005; 11: 1835–1841.

    Article  CAS  PubMed  Google Scholar 

  46. Yopp AC, Shia J, Butte JM, Allen PJ, Fong Y, Jarnagin WR et al. CXCR4 expression predicts patient outcome and recurrence patterns after hepatic resection for colorectal liver metastases. Ann Surg Oncol 2012; 19: S339–S346.

    Article  PubMed  Google Scholar 

  47. Dubrovska A, Elliott J, Salamone RJ, Telegeev GD, Stakhovsky AE, Schepotin IB et al. CXCR4 expression in prostate cancer progenitor cells. PLoS One 2012; 7: e31226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dubrovska A, Hartung A, Bouchez LC, Walker JR, Reddy VA, Cho CY et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer 2012; 107: 43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 2013; 32: 209–221.

    Article  CAS  PubMed  Google Scholar 

  50. Lee CG, Das B, Lin TL, Grimes C, Zhang X, Lavezzi T et al. A rare fraction of drug-resistant follicular lymphoma cancer stem cells interacts with follicular dendritic cells to maintain tumourigenic potential. Br J Haematol 2012; 158: 79–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan L, Sui X, Deng H, Ding M . Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One 2011; 6: e23383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng X, Xie Q, Li S, Zhang W . CXCR4-positive subset of glioma is enriched for cancer stem cells. Oncol Res 2011; 19: 555–561.

    Article  PubMed  Google Scholar 

  53. Oda Y, Tateishi N, Matono H, Matsuura S, Yamamaoto H, Tamiya S et al. Chemokine receptor CXCR4 expression is correlated with VEGF expression and poor survival in soft-tissue sarcoma. Int J Cancer 2009; 124: 1852–1859.

    Article  CAS  PubMed  Google Scholar 

  54. Palmerini E, Benassi MS, Quattrini I, Pazzaglia L, Donati D, Benini S et al. Prognostic and predictive role of CXCR4, IGF-1R and Ezrin expression in localized synovial sarcoma: is chemotaxis important to tumor response? Orphanet J Rare Dis 2015; 10: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hirata K, Suzuki H, Imaeda H, Matsuzaki J, Tsugawa H, Nagano O et al. CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br J Cancer 2013; 109: 379–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kimura Y, Goi T, Nakazawa T, Hirono Y, Katayama K, Urano T et al. CD44variant exon 9 plays an important role in colon cancer initiating cells. Oncotarget 2013; 4: 785–791.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Olsson E, Honeth G, Bendahl PO, Saal LH, Gruvberger-Saal S, Ringner M et al. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer 2011; 11: 418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeilstra J, Joosten SP, van Andel H, Tolg C, Berns A, Snoek M et al. Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. Oncogene 2014; 33: 665–670.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr T Akagi for pCX4bleo vector. This work was supported in part by the Joint Usage/Research Program of Medical Research Institute, Tokyo Medical and Dental University (TMDU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Kimura or S Tanaka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Wang, L., Tabu, K. et al. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells. Oncogene 35, 3932–3943 (2016). https://doi.org/10.1038/onc.2015.461

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.461

This article is cited by

Search

Quick links