Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Metabotropic glutamate receptor 1 acts as a dependence receptor creating a requirement for glutamate to sustain the viability and growth of human melanomas

Abstract

Metabotropic glutamate 1 (mGlu) receptor has been proposed as a target for the treatment of metastatic melanoma. Studies have demonstrated that inhibiting the release of glutamate (the natural ligand of mGlu1 receptors), results in a decrease of melanoma tumor growth in mGlu1 receptor-expressing melanomas. Here we demonstrate that mGlu1 receptors, which have been previously characterized as oncogenes, also behave like dependence receptors by creating a dependence on glutamate for sustained cell viability. In the mGlu1 receptor-expressing melanoma cell lines SK-MEL-2 (SK2) and SK-MEL-5 (SK5), we show that glutamate is both necessary and sufficient to maintain cell viability, regardless of underlying genetic mutations. Addition of glutamate increased DNA synthesis, whereas removal of glutamate not only suppressed DNA synthesis but also promoted cell death in SK2 and SK5 melanoma cells. Using genetic and pharmacological inhibitors, we established that this effect of glutamate is mediated by the activation of mGlu1 receptors. The stimulatory potential of mGlu1 receptors was further confirmed in vivo in a melanoma cell xenograft model. In this model, subcutaneous injection of SK5 cells with short hairpin RNA-targeted downregulation of mGlu1 receptors resulted in a decrease in the rate of tumor growth relative to control. We also demonstrate for the first time that a selective mGlu1 receptor antagonist JNJ16259685 ((3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone) slows SK2 and SK5 melanoma tumor growth in vivo. Taken together, these data suggest that pharmacological inhibition of mGlu1 receptors may be a novel approach for the treatment of metastatic melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. American Cancer Society Cancer Facts & Figures 2013. American Cancer Society: Atlant, GA, USA, 2013.

  2. Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Yamanoshita O et al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT signaling in malignant melanoma progression and therapy. Dermatol Res Pract 2012; 2012: 1–5.

    Article  Google Scholar 

  3. Maira F, Catania A, Candido S, Russo AE, McCubrey JA, Libra M et al. Molecular targeted therapy in melanoma: a way to reverse resistance to conventional drugs. Curr Drug Deliv 2012; 9: 17–29.

    Article  CAS  Google Scholar 

  4. Namkoong J, Shin SS, Lee HJ, Marín YE, Wall BA, Goydos JS et al. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res 2007; 67: 2298–2305.

    Article  CAS  Google Scholar 

  5. Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A et al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 2003; 34: 108–112.

    Article  CAS  Google Scholar 

  6. Shin SS, Namkoong J, Wall BA, Gleason R, Lee HJ, Chen S . Oncogenic activities of metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell Melanoma Res 2008; 21: 368–378.

    Article  CAS  PubMed Central  Google Scholar 

  7. Khan AJ, Wall B, Ahlawat S, Green C, Schiff D, Mehnert JM et al. Riluzole enhances ionizing radiation-induced cytotoxicity in human melanoma cells that ectopically express metabotropic glutamate receptor 1 in vitro and in vivo. Clin Cancer Res 2011; 17: 1807–1814.

    Article  CAS  PubMed Central  Google Scholar 

  8. Shin SS, Martino JJ, Chen S . Metabotropic glutamate receptors (mGluRs) and cellular transformation. Neuropharmacology 2008; 55: 396–402.

    Article  CAS  PubMed Central  Google Scholar 

  9. Wangari-Talbot J, Wall BA, Goydos JS, Chen S . Functional effects of GRM1 suppression in human melanoma cells. Mol Cancer Res 2012; 10: 1440–1450.

    Article  CAS  PubMed Central  Google Scholar 

  10. Ohtani Y, Harada T, Funasaka Y, Nakao K, Takahara C, Abdel-Daim M et al. Metabotropic glutamate receptor subtype-1 is essential for in vivo growth of melanoma. Oncogene 2008; 27: 7162–7170.

    Article  CAS  Google Scholar 

  11. Le MN, Chan JL, Rosenberg SA, Nabatian AS, Merrigan KT, Cohen-Solal KA et al. The glutamate release inhibitor riluzole decreases migration, invasion, and proliferation of melanoma cells. J Invest Dermatol 2010; 130: 2240–2249.

    Article  CAS  PubMed Central  Google Scholar 

  12. Conn PJ, Pin JP . Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997; 37: 205–237.

    Article  CAS  Google Scholar 

  13. Pin JP, Duvoisin R . The metabotropic glutamate receptors: structure and functions. Neuropharmacology 1995; 34: 1–26.

    Article  CAS  Google Scholar 

  14. Teh J, Chen S . Metabotropic glutamate receptors and cancerous growth. Wiley Interdiscip Rev Membr Transp Signal 2012; 1: 211–220.

    Article  CAS  Google Scholar 

  15. Speyer CL, Smith JS, Banda M, DeVries JA, Mekani T, Gorski DH . Metabotropic glutamate receptor-1: a potential therapeutic target for the treatment of breast cancer. Breast Cancer Res Treat 2012; 132: 565–573.

    Article  CAS  Google Scholar 

  16. Banda M, Speyer CL, Semma SN, Osuala KO, Kounalakis N, Torres KE et al. Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS ONE 2014; 9: 1–12.

    Article  Google Scholar 

  17. Chang HJ, Yoo BC, Lim SB, Jeong SY, Kim WH, Park JG . Metabotropic glutamate receptor 4 expression in colorectal carcinoma and its prognostic significance. Clin Cancer Res 2005; 11: 3288–3295.

    Article  CAS  Google Scholar 

  18. Brocke KS, Staufner C, Luksch H, Geiger KD, Stepulak A, Marzahn J et al. Glutamate receptors in pediatric tumors of the central nervous system. Cancer Biol Ther 2010; 9: 455–468.

    Article  CAS  Google Scholar 

  19. Park SY, Lee SA, Han IH, Yoo BC, Lee SH, Park JY et al. Clinical significance of metabotropic glutamate receptor 5 expression in oral squamous cell carcinoma. Oncol Rep 2007; 17: 81–87.

    PubMed  Google Scholar 

  20. de Groot J, Sontheimer H . Glutamate and the biology of gliomas. Glia 2011; 59: 1181–1189.

    Article  Google Scholar 

  21. Ye ZC, Sontheimer H . Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 1999; 59: 4383–4391.

    CAS  PubMed  Google Scholar 

  22. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H . Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 2007; 67: 9463–9471.

    Article  CAS  PubMed Central  Google Scholar 

  23. Lee HJ, Wall BA, Wangari-Talbot J, Shin SS, Rosenberg S, Chan JL et al. Glutamatergic pathway targeting in melanoma: single-agent and combinatorial therapies. Clin Cancer Res 2011; 17: 7080–7092.

    Article  CAS  PubMed Central  Google Scholar 

  24. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468: 968–972.

    Article  CAS  PubMed Central  Google Scholar 

  25. DiRaddo JO, Pshenichkin S, Gelb T, Wroblewski JT . Two newly identified exons in human GRM1 express a novel splice variant of metabotropic glutamate 1 receptor. Gene 2013; 519: 367–373.

    Article  CAS  PubMed Central  Google Scholar 

  26. Lee HJ, Wall BA, Wangari-Talbot J, Chen S . Regulation of mGluR1 expression in human melanocytes and melanoma cells. BBA Gene Regulatory Mechanisms 2012; 1819: 1123–1131.

    CAS  PubMed  Google Scholar 

  27. Frati C, Marchese C, Fisichella G, Copani A, Nasca MR, Storto M et al. Expression of functional mGlu5 metabotropic glutamate receptors in human melanocytes. J Cell Physiol 2000; 183: 364–372.

    Article  CAS  Google Scholar 

  28. Wen Y, Li J, Koo J, Shin SS, Lin Y, Jeong BS et al. Activation of the glutamate receptor GRM1 enhances angiogenic signaling to drive melanoma progression. Cancer Res. 2014; 74: 2499–2509.

    Article  CAS  PubMed Central  Google Scholar 

  29. Deng W, Yue Q, Rosenberg PA, Volpe JJ, Jensen FE . Oligodendrocyte excitotoxicity determined by local glutamate accumulation and mitochondrial function. J Neurochem 2006; 98: 213–222.

    Article  CAS  Google Scholar 

  30. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P et al. Features of apoptotic cells measured by flow cytometry. Cytometry 1992; 13: 795–808.

    Article  CAS  Google Scholar 

  31. Ringer L, Sirajuddin P, Heckler M, Ghosh A, Suprynowicz F, Yenugonda VM et al. VMY-1-103 is a novel CDK inhibitor that disrupts chromosome organization and delays metaphase progression in medulloblastoma cells. Cancer Biol Ther 2011; 12: 818–826.

    Article  CAS  PubMed Central  Google Scholar 

  32. Lavreysen H, Wouters R, Bischoff F, Nóbrega Pereira S, Langlois X, Blokland S et al. JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology 2004; 47: 961–972.

    Article  CAS  Google Scholar 

  33. Prickett TD, Samuels Y . Molecular pathways: dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res 2012; 18: 4240–4246.

    Article  CAS  PubMed Central  Google Scholar 

  34. Willard SS, Koochekpour S . Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 2013; 9: 948–959.

    Article  CAS  PubMed Central  Google Scholar 

  35. Seidlitz EP, Sharma MK, Saikali Z, Ghert M, Singh G . Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis 2009; 26: 781–787.

    Article  CAS  Google Scholar 

  36. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M . Glutamate release promotes growth of malignant gliomas. Nat Med 2001; 7: 1010–1015.

    Article  CAS  Google Scholar 

  37. Koochekpour S, Majumdar S, Azabdaftari G, Attwood K, Scioneaux R, Subramani D et al. Serum glutamate levels correlate with Gleason score and glutamate blockade decreases proliferation, migration, and invasion and induces apoptosis in prostate cancer cells. Clin Cancer Res 2012; 18: 5888–5901.

    Article  CAS  PubMed Central  Google Scholar 

  38. Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43: 442–446.

    Article  CAS  PubMed Central  Google Scholar 

  39. Ortiz P, Vanaclocha F, López-Bran E, Esquivias JI, López-Estebaranz JL, Martín-González M et al. Genetic analysis of the GRM1 gene in human melanoma susceptibility. Eur J Hum Genet 2007; 15: 1176–1182.

    Article  CAS  Google Scholar 

  40. Steckler T, Lavreysen H, Oliveira AM, Aerts N, Van Craenendonck H, Prickaerts J et al. Effects of mGlu1 receptor blockade on anxiety-related behaviour in the rat lick suppression test. Psychopharmacology (Berl) 2005; 179: 198–206.

    Article  CAS  Google Scholar 

  41. Steckler T, Oliveira AF, Van Dyck C, Van Craenendonck H, Mateus AM, Langlois X et al. Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial Water maze task. Behav Brain Res 2005; 14: 52–60.

    Article  Google Scholar 

  42. Pshenichkin S, Dolińska M, Klauzińska M, Luchenko V, Grajkowska E, Wroblewski JT . Dual neurotoxic and neuroprotective role of metabotropic glutamate receptor 1 in conditions of trophic deprivation—possible role as a dependence receptor. Neuropharmacology 2008; 55: 500–508.

    Article  CAS  PubMed Central  Google Scholar 

  43. Goldschneider D, Mehlen P . Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 2010; 29: 1865–1882.

    Article  CAS  Google Scholar 

  44. Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci USA 2008; 105: 4850–4855.

    Article  CAS  Google Scholar 

  45. Delloye-Bourgeois C, Brambilla E, Coissieux MM, Guenebeaud C, Pedeux R, Firlej V et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst 2009; 101: 237–247.

    Article  CAS  Google Scholar 

  46. Delloye-Bourgeois C, Fitamant J, Paradisi A, Cappellen D, Douc-Rasy S, Raquin MA et al. Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med 2009; 206: 833–847.

    Article  CAS  PubMed Central  Google Scholar 

  47. Rzeski W, Ikonomidou C, Turski L . Glutamate antagonists limit tumor growth. Biochem Pharmacol 2002; 98: 1195–1200.

    Article  Google Scholar 

  48. Blaabjerg M, Fang L, Zimmer J, Baskys A . Neuroprotection against NMDA excitotoxicity by group I metabotropic glutamate receptors is associated with reduction of NMDA stimulated currents. Exp Neurol 2003; 183: 573–580.

    Article  CAS  Google Scholar 

  49. Hoogduijn MJ, Hitchcock IS, Smit NP, Gillbro JM, Schallreuter KU, Genever PG . Glutamate receptors on human melanocytes regulate the expression of MiTF. Pigment Cell Res 2006; 19: 58–67.

    Article  CAS  Google Scholar 

  50. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. New Engl J Med 2012; 367: 1694–1703.

    Article  CAS  Google Scholar 

  51. Emery AC, Pshenichkin S, Takoudjou GR, Grajkowska E, Wolfe BB, Wroblewski JT et al. The protective signaling of metabotropic glutamate receptor 1 is mediated by sustained, beta-arrestin-1-dependent ERK phosphorylation. J Biol Chem 2010; 285: 26041–26048.

    Article  CAS  PubMed Central  Google Scholar 

  52. Edward HJ, Kevin Basile K, Aplin AE . Beneficial effects of RAF inhibitor in mutant BRAF splice variant-expressing melanoma. Mol Cancer Res 2014; 12: 795–802.

    Article  Google Scholar 

  53. Martino JJ, Wall BA, Mastrantoni E, Wilimczyk BJ, La Cava SN, Degenhardt K et al. Metabotropic glutamate receptor 1 (Grm1) is an oncogene in epithelial cells. Oncogene 2013; 32: 4366–4376.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Flow Cytometry and Cell Sorting Shared Resource (partially supported by the NIH/NCI grant P30-CA051008), particularly Karen Creswell, and the Histopathology and Tissue Shared Resource (partially supported by the NIH/NCI grant P30-CA051008) at The Georgetown–Lombardi Comprehensive Cancer Center (Georgetown University, Washington, DC, USA) for their expertise. Also, we thank Dr Suzie Chen from Rutgers University for her guidance and generosity and Maria Salinas (Georgetown) for her technical expertise. This work was partially supported by the Pharmaceutical Research and Manufacturers of America Foundation Pre Doctoral Fellowship in Pharmacology/Toxicology to TG, The National Institutes of Health grant NS37436 to JTW and CA129003 to CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J T Wroblewski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelb, T., Pshenichkin, S., Rodriguez, O. et al. Metabotropic glutamate receptor 1 acts as a dependence receptor creating a requirement for glutamate to sustain the viability and growth of human melanomas. Oncogene 34, 2711–2720 (2015). https://doi.org/10.1038/onc.2014.231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.231

This article is cited by

Search

Quick links