Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The complex roles of Wnt antagonists in RCC

Abstract

Renal cell carcinoma (RCC) is the most lethal of all the genitourinary cancers, as it is generally refractory to current treatment regimens, including chemotherapy and radiation therapy. Targeted therapies against critical signaling pathways associated with RCC pathogenesis, such as vascular endothelial growth factor, von Hippel–Lindau tumor suppressor and mammalian target of rapamycin, have shown limited efficacy so far. Thus, Wnt signaling, which is known to be intricately involved in the pathogenesis of RCC, has attracted much interest. Several Wnt signaling components have been examined in RCC, and, while studies suggest that Wnt signaling is constitutively active in RCC, the molecular mechanisms differ considerably from other human carcinomas. Increasing evidence indicates that secreted Wnt antagonists have important roles in RCC pathogenesis. Considering these vital roles, it has been postulated—and supported by experimental evidence—that the functional loss of Wnt antagonists, for example by promoter hypermethylation, can contribute to constitutive activation of the Wnt pathway, resulting in carcinogenesis through dysregulation of cell proliferation and differentiation. However, subsequent functional studies of these Wnt antagonists have demonstrated the inherent complexities underlying their role in RCC pathogenesis.

Key Points

  • Constitutive Wnt signaling is intricately involved in the pathogenesis of renal cell carcinoma (RCC); inactivation and attenuation of Wnt signaling is affected by a class of molecules called Wnt antagonists

  • The functional loss of Wnt antagonists, usually by promoter hypermethylation, has been shown to contribute to the activation or amplification of aberrant Wnt–β-catenin signaling in RCC, supporting a tumor suppressor role for these molecules

  • These soluble factors are now increasingly recognized as having complex roles in RCC, as some of these proteins have been reported to exhibit oncogenic activities in this malignancy

  • Some Wnt antagonists show biphasic effects in primary versus metastatic RCC

  • Further studies are warranted to understand the detailed role of these proteins in RCC and exploit their potential as therapeutic targets in RCC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt signaling pathway and its regulation by Wnt antagonists.
Figure 2: Antagonists that bind Wnt.
Figure 3: Antagonists that bind LRP5/LRP6.

Similar content being viewed by others

References

  1. Zambrano, N. R., Lubensky, I. A., Merino, M. J., Linehan, W. M. & Walther, M. M. Histopathology and molecular genetics of renal tumors toward unification of a classification system. J. Urol. 162, 1246–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Rini, B. I., Rathmell, W. K. & Godley, P. Renal cell carcinoma. Curr. Opin. Oncol. 20, 300–306 (2008).

    Article  PubMed  Google Scholar 

  3. Pantuck, A. J., Zisman, A. & Belldegrun, A. S. The changing natural history of renal cell carcinoma. J. Urol. 166, 1611–1623 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Rini, B. I. & Bukowski, R. M. Targeted therapy for metastatic renal cell carcinoma: a home run or a work in progress? Oncology (Williston Park) 22, 388–396 (2008).

    Google Scholar 

  5. Banumathy, G. & Cairns, P. Signaling pathways in renal cell carcinoma. Cancer Biol. Ther. 10, 658–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pavlovich, C. P. & Schmidt, L. S. Searching for the hereditary causes of renal-cell carcinoma. Nat. Rev. Cancer 4, 381–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Zbar, B., Klausner, R. & Linehan, W. M. Studying cancer families to identify kidney cancer genes. Annu. Rev. Med. 54, 217–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Nusse, R. Wnt signaling in disease and in development. Cell. Res. 15, 28–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. van Amerongen, R., Mikels, A. & Nusse, R. Alternative Wnt signaling is initiated by distinct receptors. Sci. Signal 1, re9 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, S. et al. Wnt-1 signaling inhibits apoptosis by activating β-catenin/T cell factor-mediated transcription. J. Cell Biol. 152, 87–96 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuhl, M. The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front. Biosci. 9, 967–974 (2004).

    Article  PubMed  Google Scholar 

  16. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Ishitani, T. et al. The TAK1–NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuhl, M., Sheldahl, L. C., Malbon, C. C. & Moon, R. T. Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12701–12711 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kawano, Y. & Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Esteve, P. & Bovolenta, P. The advantages and disadvantages of Sfrp1 and Sfrp2 expression in pathological events. Tohoku J. Exp. Med. 221, 11–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, S., Krinks, M., Lin, K., Luyten, F. P. & Moos, M. Jr. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Melkonyan, H. S. et al. SARPs: a family of secreted apoptosis-related proteins. Proc. Natl Acad. Sci. USA 94, 13636–13641 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoang, B., Moos, M. Jr, Vukicevic, S. & Luyten, F. P. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J. Biol. Chem. 271, 26131–26137 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, K. et al. The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc. Natl Acad. Sci. USA 94, 11196–11200 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rattner, A. et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl Acad. Sci. USA 94, 2859–2863 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi, K. et al. Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat. Cell Biol. 11, 46–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, H. X., Ambrosio, A. L., Reversade, B. & De Robertis, E. M. Embryonic dorsal-ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124, 147–159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez-Rios, J., Esteve, P., Ruiz, J. M. & Bovolenta, P. The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural Dev. 3, 19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uren, A. et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Banyai, L. & Patthy, L. The NTR module: domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases. Protein Sci. 8, 1636–1642 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chong, J. M., Uren, A., Rubin, J. S. & Speicher, D. W. Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin modules. J. Biol. Chem. 277, 5134–5144 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Matsuyama, M., Aizawa, S. & Shimono, A. Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium. PLoS Genet. 5, e1000427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sugiyama, Y. et al. Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia. Dev. Biol. 338, 193–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez, J. et al. SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat. Neurosci. 8, 1301–1309 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Mii, Y. & Taira, M. Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 136, 4083–4088 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Leimeister, C., Bach, A. & Gessler, M. Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled related protein family. Mech. Dev. 75, 29–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Hsieh, J. C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Rubin, J. S., Barshishat-Kupper, M., Feroze-Merzoug, F. & Xi, Z. F. Secreted WNT antagonists as tumor suppressors: pro and con. Front. Biosci. 11, 2093–2105 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bafico, A., Liu, G., Yaniv, A., Gazit, A. & Aaronson, S. A. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat. Cell Biol. 3, 683–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Mao, B. et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Semenov, M. V. et al. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11, 951–961 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Krupnik, V. E. et al. Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Brott, B. K. & Sokol, S. Y. Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol. Cell. Biol. 22, 6100–6110 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoang, B. H. et al. Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt–β-catenin pathway. Cancer Res. 64, 2734–2739 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Mao, B. & Niehrs, C. Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302, 179–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417, 664–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Semenov, M. V., Zhang, X. & He, X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 283, 21427–21432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, K. et al. Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism. J. Biol. Chem. 283, 23371–23375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, W., Glinka, A., Delius, H. & Niehrs, C. Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/β-catenin signalling. Curr. Biol. 10, 1611–1614 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, W. et al. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature 454, 345–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 17, 45–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Katoh, M. WNT/PCP signaling pathway and human cancer (review). Oncol. Rep. 14, 1583–1588 (2005).

    CAS  PubMed  Google Scholar 

  56. Gumz, M. L. et al. Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin. Cancer Res. 13, 4740–4749 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Dahl, E. et al. Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene 26, 5680–5691 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Awakura, Y., Nakamura, E., Ito, N., Kamoto, T. & Ogawa, O. Methylation-associated silencing of SFRP1 in renal cell carcinoma. Oncol. Rep. 20, 1257–1263 (2008).

    CAS  PubMed  Google Scholar 

  59. Hsieh, S. Y., Hsieh, P. S., Chiu, C. T. & Chen, W. Y. Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene 23, 9183–9189 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Urakami, S. et al. Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin. Cancer Res. 12, 6989–6997 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Urakami, S. et al. Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clin. Cancer Res. 12, 2109–2116 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Kawamoto, K. et al. DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines. Int. J. Cancer 123, 535–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Aguilera, O., Muñoz, A., Esteller, M. & Fraga, M. F. Epigenetic alterations of the Wnt/β-catenin pathway in human disease. Endocr. Metab. Immune Disord. Drug Targets 7, 13–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Bilim, V. et al. Altered expression of β-catenin in renal cell cancer and transitional cell cancer with the absence of β-catenin gene mutations. Clin. Cancer Res. 6, 460–466 (2000).

    CAS  PubMed  Google Scholar 

  65. Bohm, M., Wieland, I., Stinhofer, C., Otto, T. & Rubben, H. Detection of loss of heterozygosity in the APC tumor suppressor gene in nonpapillary renal cell carcinoma by microdissection and polymerase chain reaction. Urol. Res. 25, 161–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Janssens, N., Andries, L., Janicot, M., Perera, T. & Bakker, A. Alteration of frizzled expression in renal cell carcinoma. Tumour Biol. 25, 161–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, Y. S. et al. β-catenin expression and mutational analysis in renal cell carcinomas. Pathol. Int. 50, 725–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Shiina, H. et al. The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma. Clin. Cancer Res. 9, 2121–2132 (2003).

    CAS  PubMed  Google Scholar 

  69. Suzuki, H. et al. Mutational state of von Hippel–Lindau and adenomatous polyposis coli genes in renal tumors. Oncology 54, 252–257 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Ueda, M. et al. Mutations of the β- and γ-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br. J. Cancer 85, 64–68 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zang, T., Zhuang, L., Zhang, Z., Xin, D. & Guo, Y. Expression of β-catenin in renal cell carcinoma. Chin. Med. J. (Engl.) 114, 152–154 (2001).

    CAS  Google Scholar 

  72. Qian, C. N. et al. Cystic renal neoplasia following conditional inactivation of Apc in mouse renal tubular epithelium. J. Biol. Chem. 280, 3938–3945 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Saadi-Kheddouci, S. et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the β-catenin gene. Oncogene 20, 5972–5981 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Sansom, O. J., Griffiths, D. F., Reed, K. R., Winton, D. J. & Clarke, A. R. Apc deficiency predisposes to renal carcinoma in the mouse. Oncogene 24, 8205–8210 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Peruzzi, B., Athauda, G. & Bottaro, D. P. The von Hippel–Lindau tumor suppressor gene product represses oncogenic β-catenin signaling in renal carcinoma cells. Proc. Natl Acad. Sci. USA 103, 14531–14536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Major, M. B. et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science 316, 1043–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ying, Y. & Tao, Q. Epigenetic disruption of the WNT/β-catenin signaling pathway in human cancers. Epigenetics 4, 307–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Hirata, H. et al. Role of secreted frizzled-related protein 3 in human renal cell carcinoma. Cancer Res. 70, 1896–1905 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Saini, S. et al. Functional significance of secreted Frizzled-related protein 1 in metastatic renal cell carcinomas. Cancer Res. 69, 6815–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Shi, Y., He, B., You, L. & Jablons, D. M. Roles of secreted frizzled-related proteins in cancer. Acta Pharmacol. Sin. 28, 1499–1504 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ueno, K. et al. IGFBP-4 activates the Wnt/β-catenin signaling pathway and induces M-CAM expression in human renal cell carcinoma. Int. J. Cancer (2011).

  82. Dennis, S., Aikawa, M., Szeto, W., d'Amore, P. A. & Papkoff, J. A secreted frizzled related protein, FrzA, selectively associates with Wnt-1 protein and regulates Wnt-1 signaling. J. Cell Sci. 112 (Pt 21), 3815–3820 (1999).

    CAS  PubMed  Google Scholar 

  83. Caldwell, G. M. et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 64, 883–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Fukui, T. et al. Transcriptional silencing of secreted frizzled related protein 1 (SFRP 1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene 24, 6323–6327 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Veeck, J. et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25, 3479–3488 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Takada, T. et al. Methylation-associated silencing of the Wnt antagonist SFRP1 gene in human ovarian cancers. Cancer Sci. 95, 741–744 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Yoshino, K. et al. Secreted Frizzled-related proteins can regulate metanephric development. Mech. Dev. 102, 45–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Cheng, Y. Y. et al. Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer. Br. J. Cancer 97, 895–901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, Z., Li, L. & Wang, J. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig. Dis. Sci. 52, 2287–2291 (2007).

    Article  PubMed  Google Scholar 

  90. Veeck, J. et al. Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer. Mol. Cancer 7, 83 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yamamura, S. et al. Oncogenic functions of secreted Frizzled-related protein 2 in human renal cancer. Mol. Cancer Ther. 9, 1680–1687 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, S., Krinks, M. & Moos, M. Jr. Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts -3A, -5A, or -11. Biochem. Biophys. Res. Commun. 236, 502–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Kongkham, P. N. et al. The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene 29, 3017–3024 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Mandal, D. et al. Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma. Gene 386, 131–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Zi, X. et al. Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res. 65, 9762–9770 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Suzuki, H. et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet. 31, 141–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Kawakami, K. et al. Secreted frizzled-related protein-5 is epigenetically downregulated and functions as a tumor suppressor in kidney cancer. Int. J. Cancer 128, 541–550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kawakami, K. et al. Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res. 69, 8603–8610 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Urakami, S. et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/β-catenin signaling pathway. Clin. Cancer Res. 12, 383–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Pietila, I. et al. Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling. Dev. Biol. 353, 50–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Hirata, H. et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int. J. Cancer 128, 1793–1803 (2010).

    Article  CAS  Google Scholar 

  102. Shou, J. et al. Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene 21, 878–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, J., Shou, J. & Chen, X. Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 19, 1843–1848 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Mukhopadhyay, M. et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Hirata, H. et al. Wnt antagonist gene DKK2 is epigenetically silenced and inhibits renal cancer progression through apoptotic and cell cycle pathways. Clin. Cancer Res. 15, 5678–5687 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Hirata, H. et al. Wnt antagonist gene polymorphisms and renal cancer. Cancer 115, 4488–4503 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Kurose, K. et al. Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J. Urol. 171, 1314–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Ueno, K. et al. Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma. Mol. Carcinog. 50, 449–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Hirata, H. et al. DICKKOPF-4 activates the noncanonical c-Jun–NH2 kinase signaling pathway while inhibiting the Wnt-canonical pathway in human renal cell carcinoma. Cancer 117, 1649–1660 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Matsui, A. et al. DICKKOPF-4 and -2 genes are upregulated in human colorectal cancer. Cancer Sci. 100, 1923–1930 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Itasaki, N. et al. Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130, 4295–4305 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Clausen, K. A. et al. SOSTDC1 differentially modulates Smad and β-catenin activation and is down-regulated in breast cancer. Breast Cancer Res. Treat. 129, 737–746 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Blish, K. R. et al. A human bone morphogenetic protein antagonist is down-regulated in renal cancer. Mol. Biol. Cell 19, 457–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Blish, K. R. et al. Loss of heterozygosity and SOSTDC1 in adult and pediatric renal tumors. J. Exp. Clin. Cancer Res. 29, 147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Klein, C. A. Cancer. The metastasis cascade. Science 321, 1785–1787 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Fukuhara, K. et al. Secreted frizzled related protein 1 is overexpressed in uterine leiomyomas, associated with a high estrogenic environment and unrelated to proliferative activity. J. Clin. Endocrinol. Metab. 87, 1729–1736 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Joesting, M. S. et al. Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev. Biol. 317, 161–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Joesting, M. S. et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res. 65, 10423–10430 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Roth, W. et al. Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene 19, 4210–4220 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Lee, J. L., Lin, C. T., Chueh, L. L. & Chang, C. J. Autocrine/paracrine secreted Frizzled-related protein 2 induces cellular resistance to apoptosis: a possible mechanism of mammary tumorigenesis. J. Biol. Chem. 279, 14602–14609 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Kress, E., Rezza, A., Nadjar, J., Samarut, J. & Plateroti, M. The frizzled-related sFRP2 gene is a target of thyroid hormone receptor α1 and activates β-catenin signaling in mouse intestine. J. Biol. Chem. 284, 1234–1241 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Wirths, O. et al. Overexpression of human Dickkopf-1, an antagonist of wingless/WNT signaling, in human hepatoblastomas and Wilms' tumors. Lab. Invest. 83, 429–434 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E. & Lopez-Rios, J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J. Cell Sci. 121, 737–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Satoh, W., Gotoh, T., Tsunematsu, Y., Aizawa, S. & Shimono, A. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133, 989–999 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Martin-Manso, G. et al. sFRP-1 binds via its netrin-related motif to the N-module of thrombospondin-1 and blocks thrombospondin-1 stimulation of MDA-MB-231 breast carcinoma cell adhesion and migration. Arch. Biochem. Biophys. 509, 147–156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Esteve, P. et al. SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat. Neurosci. 14, 562–569 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Roger Erickson for his support and assistance with the preparation of the manuscript. The work in Dr Dahiya's lab is supported by Grant RO1CA130860 from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article and discussing its content. S. Saini wrote the article. S. Saini and R. Dahiya performed review/editing of the manuscript before submission.

Corresponding author

Correspondence to Rajvir Dahiya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, S., Majid, S. & Dahiya, R. The complex roles of Wnt antagonists in RCC. Nat Rev Urol 8, 690–699 (2011). https://doi.org/10.1038/nrurol.2011.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing