Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New targets for intervention in the treatment of postmenopausal osteoporosis

Abstract

Postmenopausal osteoporosis is a disease of high bone remodeling, with an imbalance of bone resorption over bone formation, resulting in decreased bone mineral density and disruption of bone microarchitecture. With our improved understanding of the molecular and cellular regulators and mediators of bone remodeling, new targets for therapeutic intervention have been identified. Receptor activator of nuclear factor κB ligand (RANKL) is the principal regulator of osteoclast differentiation, activity, and survival; denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and is approved for the treatment of women with postmenopausal osteoporosis at high risk of fractures. Cathepsin K is a protease produced by activated osteoclasts that degrades the protein matrix of bone. An inhibitor of cathepsin K, odanacatib, is in phase III clinical trials for the treatment of postmenopausal osteoporosis; it decreases bone resorption while seeming to suppress bone formation less than other antiresorptive agents. Sclerostin is a cytokine produced by osteocytes that inhibits osteoblastic bone formation; investigational monoclonal antibodies to sclerostin, such as AMG 785, have osteoanabolic properties with the potential to improve clinical outcomes in patients with osteoporosis. These and other novel interventions that target newly recognized regulators of bone remodeling are promising agents for the treatment of osteoporosis.

Key Points

  • Postmenopausal osteoporosis is a disease of excessive bone remodeling, with an imbalance of bone resorption greater than bone formation

  • Understanding of the regulation of bone remodeling has led to the identification of novel pharmacological targets for the treatment of postmenopausal osteoporosis

  • Denosumab is a fully human monoclonal antibody against receptor activator of nuclear factor κB ligand (RANKL) that is an approved treatment for women with postmenopausal osteoporosis at high risk of fractures

  • Odanacatib, an investigational inhibitor of cathepsin K, increases bone mineral density (BMD) with a mode of action that might partially uncouple bone resorption and formation

  • Investigational antibodies against sclerostin, such as AMG 785, increase BMD by stimulating bone formation and reducing bone resorption

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A conceptual view of bone remodeling on the surface of trabecular bone in health, disease, and in response to drug treatment.
Figure 2: RANKL–RANK–OPG regulatory pathway and osteoclastic bone resorption.
Figure 3: Wnt signaling.

Similar content being viewed by others

References

  1. Klibanski, A. et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 285, 785–795 (2001).

    Article  Google Scholar 

  2. Kanis, J. A., on behalf of the World Health Organization Scientific Group. Assessment of Osteoporosis at the Primary Health-care Level (World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK, 2008).

    Google Scholar 

  3. National Osteoporosis Foundation. America's Bone Health: The State of Osteoporosis and Low Bone Mass in Our Nation (National Osteoporosis Foundation, Washington, DC, 2002).

  4. US Department of Health and Human Services. Bone Health and Osteoporosis: A Report of the Surgeon General (US Department of Health and Human Services, Office of the Surgeon General, Rockville, MD, 2004).

  5. Riggs, B. L. & Melton, L. J. III. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17 (Suppl.), 505S–511S (1995).

    Article  CAS  Google Scholar 

  6. Cooper, C., Atkinson, E. J., Jacobsen, S. J., O'Fallon, W. M. & Melton, L. J. III. Population-based study of survival after osteoporotic fractures. Am. J. Epidemiol. 137, 1001–1005 (1993).

    Article  CAS  Google Scholar 

  7. Burge, R. et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22, 465–475 (2007).

    Article  Google Scholar 

  8. Kanis, J. A. & Johnell, O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos. Int. 16, 229–238 (2005).

    Article  CAS  Google Scholar 

  9. Felsenberg, D. & Boonen, S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin. Ther. 27, 1–11 (2005).

    Article  Google Scholar 

  10. Lewiecki, E. M. Update on bone density testing. Curr. Osteoporos. Rep. 3, 136–142 (2005).

    Article  Google Scholar 

  11. World Health Organization. FRAX WHO Fracture Risk Assessment Tool [online].

  12. MacLean, C. et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann. Intern. Med. 148, 197–213 (2008).

    Article  Google Scholar 

  13. McClung, M. R. et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch. Intern. Med. 165, 1762–1768 (2005).

    Article  CAS  Google Scholar 

  14. Meunier, P. J. et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med. 350, 459–468 (2004).

    Article  CAS  Google Scholar 

  15. Delmas, P. D. et al. Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J. Bone Miner. Res. 20, 557–563 (2005).

    Article  Google Scholar 

  16. Panneman, M. J., Lips, P., Sen, S. S. & Herings, R. M. Undertreatment with anti-osteoporotic drugs after hospitalization for fracture. Osteoporos. Int. 15, 120–124 (2004).

    Article  Google Scholar 

  17. Cramer, J. A., Gold, D. T., Silverman, S. L. & Lewiecki, E. M. A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos. Int. 18, 1023–1031 (2007).

    Article  CAS  Google Scholar 

  18. Lewiecki, E. M. Review of guidelines for bone mineral density testing and treatment of osteoporosis. Curr. Osteoporos. Rep. 3, 75–83 (2005).

    Article  Google Scholar 

  19. Theoleyre, S. et al. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 15, 457–475 (2004).

    Article  CAS  Google Scholar 

  20. Zhao, H. et al. Critical role of β3 integrin in experimental postmenopausal osteoporosis. J. Bone Miner. Res. 20, 2116–2123 (2005).

    Article  CAS  Google Scholar 

  21. McHugh, K. P. et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433–440 (2000).

    Article  CAS  Google Scholar 

  22. Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    Article  CAS  Google Scholar 

  23. Oury, F. et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev. 24, 2330–2342 (2010).

    Article  CAS  Google Scholar 

  24. Bonewald, L. F. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed Rosen, C. J.) 7th edn Ch. 4 22–27 (American Society for Bone and Mineral Research, Washington, DC, 2008).

    Book  Google Scholar 

  25. Lewiecki, E. M. RANK ligand inhibition with denosumab for the management of osteoporosis. Expert Opin. Biol. Ther. 6, 1041–1050 (2006).

    Article  CAS  Google Scholar 

  26. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  Google Scholar 

  27. Rodan, S. B. & Duong, L. T. Cathepsin K—a new molecular target for osteoporosis. IBMS BoneKEy 5, 16–24 (2008).

    Article  Google Scholar 

  28. Kim, T. S. & Tasker, A. S. Non-covalent cathepsin K inhibitors for the treatment of osteoporosis. Curr. Top. Med. Chem. 6, 355–360 (2006).

    Article  CAS  Google Scholar 

  29. US National Library of Medicine. ClinicalTrials.gov [online], (2007).

  30. Eastell, R. et al. Safety and efficacy of the cathepsin K inhibitor ONO-5334 in postmenopausal osteoporosis: the OCEAN study. J. Bone Miner. Res. 26, 1303–1312 (2011).

    Article  CAS  Google Scholar 

  31. Velcura Therapeutics. Pipeline [online] (2011).

  32. Medivir. Press Conference: Medivir sharpens the strategic focus and strengthens its financial position [online] (2009).

  33. Bone, H. G. et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J. Bone Miner. Res. 25, 937–947 (2010).

    Google Scholar 

  34. McClung, M. et al. A randomized, double-blind, placebo-controlled study of odanacatib (MK-822) in the treatment of postmenopausal women with low bone mineral density: 24 month results. J. Bone Miner. Res. 23, S82 (2008).

    Google Scholar 

  35. Lewiecki, E. M. Odanacatib, a cathepsin K inhibitor for the treatment of osteoporosis and other skeletal disorders associated with excessive bone remodeling. IDrugs 12, 799–809 (2009).

    CAS  PubMed  Google Scholar 

  36. Veverka, V. et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J. Biol. Chem. 284, 10890–10900 (2009).

    Article  CAS  Google Scholar 

  37. Babcook, J. S., Leslie, K. B., Olsen, O. A., Salmon, R. A. & Schrader, J. W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc. Natl Acad. Sci. USA 93, 7843–7848 (1996).

    Article  CAS  Google Scholar 

  38. Li, X. et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res. 24, 578–588 (2009).

    Article  CAS  Google Scholar 

  39. Ominsky, M. S. et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone Miner. Res. 25, 948–959 (2010).

    Article  CAS  Google Scholar 

  40. Rey, J. P. & Ellies, D. L. Wnt modulators in the biotech pipeline. Dev. Dyn. 239, 102–114 (2010).

    Article  CAS  Google Scholar 

  41. Padhi, D., Jang, G., Stouch, B., Fang, L. & Posvar, E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26, 19–26 (2011).

    Article  CAS  Google Scholar 

  42. Amgen. Amgen and UCB Announce Positive Phase 2 Results of AMG 785/CDP7851 in Patients With Postmenopausal Osteoporosis (PMO) [online] (2011).

  43. Yadav, V. K. et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med. 16, 308–312 (2010).

    Article  CAS  Google Scholar 

  44. Frost, M. et al. Patients with high-bone-mass phenotype owing to Lrp5–T253I mutation have low plasma levels of serotonin. J. Bone Miner. Res. 25, 673–675 (2010).

    Article  CAS  Google Scholar 

  45. Wimalawansa, S. J. Nitric oxide: novel therapy for osteoporosis. Expert Opin. Pharmacother. 9, 3025–3044 (2008).

    Article  CAS  Google Scholar 

  46. Jamal, S. A., Browner, W. S., Bauer, D. C. & Cummings, S. R. Intermittent use of nitrates increases bone mineral density: the study of osteoporotic fractures. J. Bone Miner. Res. 13, 1755–1759 (1998).

    Article  CAS  Google Scholar 

  47. Jamal, S. A., Cummings, S. R. & Hawker, G. A. Isosorbide mononitrate increases bone formation and decreases bone resorption in postmenopausal women: a randomized trial. J. Bone Miner. Res. 19, 1512–1517 (2004).

    Article  CAS  Google Scholar 

  48. Rejnmark, L., Vestergaard, P. & Mosekilde, L. Decreased fracture risk in users of organic nitrates: a nationwide case–control study. J. Bone Miner. Res. 21, 1811–1817 (2006).

    Article  CAS  Google Scholar 

  49. Jamal, S. A., Hamilton, C. J., Eastell, R. & Cummings, S. R. Effect of nitroglycerin ointment on bone density and strength in postmenopausal women: a randomized trial. JAMA 305, 800–807 (2011).

    Article  CAS  Google Scholar 

  50. Wimalawansa, S. J., Grimes, J. P., Wilson, A. C. & Hoover, D. R. Transdermal nitroglycerin therapy may not prevent early postmenopausal bone loss. J. Clin. Endocrinol. Metab. 94, 3356–3364 (2009).

    Article  CAS  Google Scholar 

  51. Glantschnig, H. et al. A rate-limiting role for DKK1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J. Pharmacol. Exp. Ther. 338, 568–578 (2011).

    Article  CAS  Google Scholar 

  52. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  Google Scholar 

  53. Heath, D. J. et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J. Bone Miner. Res. 24, 425–436 (2009).

    Article  CAS  Google Scholar 

  54. US National Library of Medicine. ClinicalTrials.gov [online], (2008).

  55. Widler, L. Calcilytics: antagonists of the calcium-sensing receptor for the treatment of osteoporosis. Future Med. Chem. 3, 535–547 (2011).

    Article  CAS  Google Scholar 

  56. US National Library of Medicine. ClinicalTrials.gov [online], (2008).

  57. [No authors listed] In brief: delayed-release risedronate (Atelvia). Med. Lett. Drugs Ther. 53, 24 (2011).

  58. Karsdal, M. A. et al. Lessons learned from the development of oral calcitonin: the first tablet formulation of a protein in phase III clinical trials. J. Clin. Pharmacol. 51, 460–471 (2011).

    Article  CAS  Google Scholar 

  59. Cosman, F. et al. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 95, 151–158 (2010).

    Article  CAS  Google Scholar 

  60. John, M. R. et al. A novel oral parathyroid hormone formulation, PTH134, demonstrated a potential therapeutically relevant pharmacokinetic and safety profile compared with teriparatide s.c. in healthy postmenopausal women after a single dose [abstract]. Arthritis Rheum. 60, 887 (2009).

    Google Scholar 

  61. Shoyele, S. A., Sivadas, N. & Cryan, S. A. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1–34) prepared as a dry powder for inhalation. AAPS PharmSciTech 12, 304–311 (2011).

    Article  CAS  Google Scholar 

  62. Lindsay, R. Preventing osteoporosis with a tissue selective estrogen complex (TSEC) containing bazedoxifene/conjugated estrogens (BZA/CE). Osteoporos. Int. 22, 447–451 (2011).

    Article  CAS  Google Scholar 

  63. Pinkerton, J. V. & Stovall, D. W. Bazedoxifene when paired with conjugated estrogens is a new paradigm for treatment of postmenopausal women. Expert Opin. Investig. Drugs 19, 1613–1621 (2010).

    Article  CAS  Google Scholar 

  64. Black, D. M. et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N. Engl. J. Med. 353, 555–565 (2005).

    Article  CAS  Google Scholar 

  65. Kurland, E. S. et al. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos. Int. 15, 992–997 (2004).

    Article  CAS  Google Scholar 

  66. Ettinger, B., San, M. J., Crans, G. & Pavo, I. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J. Bone Miner. Res. 19, 745–751 (2004).

    Article  CAS  Google Scholar 

  67. Cosman, F. et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J. Bone Miner. Res. 26, 503–511 (2011).

    Article  CAS  Google Scholar 

  68. Cosman, F. et al. Daily and cyclic parathyroid hormone in women receiving alendronate. N. Engl. J. Med. 353, 566–575 (2005).

    Article  CAS  Google Scholar 

  69. Leder, B. Z. et al. Effects of teriparatide treatment and discontinuation in postmenopausal women and eugonadal men with osteoporosis. J. Clin. Endocrinol. Metab. 94, 2915–2921 (2009).

    Article  CAS  Google Scholar 

  70. Black, D. M. et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348, 1535–1541 (1996).

    Article  CAS  Google Scholar 

  71. Harris, S. T. et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282, 1344–1352 (1999).

    Article  CAS  Google Scholar 

  72. Chesnut, C. H. III et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J. Bone Miner. Res. 19, 1241–1249 (2004).

    Article  CAS  Google Scholar 

  73. Black, D. M. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 356, 1809–1822 (2007).

    Article  CAS  Google Scholar 

  74. Ettinger, B. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene—results from a 3-year randomized clinical trial. JAMA 282, 637–645 (1999).

    Article  CAS  Google Scholar 

  75. Chesnut, C. H. III et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am. J. Med. 109, 267–276 (2000).

    Article  CAS  Google Scholar 

  76. Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article  CAS  Google Scholar 

  77. Greenspan, S. L. et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann. Intern. Med. 146, 326–339 (2007).

    Article  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov [online], (2009).

  79. Fukumoto, S. Antagonist for calcium-sensing receptor. JTT-305/MK-5442 [Japanese]. Clin. Calcium 21, 89–93 (2011).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

E. M. Lewiecki has received grant/research support from Amgen, Eli Lilly, Novartis, Merck, Warner Chilcott, and Genentech, and served on the scientific advisory board and/or received speakers' bureau from Amgen, Eli Lilly Novartis, Genentech and Merck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewiecki, E. New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol 7, 631–638 (2011). https://doi.org/10.1038/nrrheum.2011.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing