Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo

Key Points

  • Dendritic cells (DCs) are heterogeneous. The migratory DCs traffic from tissues to lymph nodes, where they mature. The resident DCs spend their entire lifespan in the lymphoid organs in an immature state until activated by signals reaching these organs. Both migratory and resident DCs can be subdivided into several subtypes with different roles in antigen presentation.

  • Endogenous antigenic peptides (that is, those derived from proteins synthesized by the DCs themselves) are presented on MHC class I and II molecules by all DCs and across all maturational states.

  • Variability in antigen capture (through differential expression of endocytic mechanisms or receptors) can dictate the part played by each DC subset in the presentation of exogenous antigens. Additional differences in the expression of components of the cross-presentation machinery, and in antigen handling, further determine the role of each DC in MHC class II presentation and MHC class I cross-presentation.

  • Resident DCs have important roles in the presentation of antigens from blood pathogens; CD8+ DCs are biased towards MHC class I cross-presentation and CD8 DCs are biased towards MHC class II presentation.

  • Self and pathogen antigens located in peripheral tissues are brought to lymph nodes by migratory DCs, which present the antigens on MHC class II molecules. These antigens can be transferred to resident CD8+ DCs, which then present the antigens on MHC class II molecules, and also cross-present them through the MHC class I pathway.

  • Cooperation between migratory and resident DC subsets allows the exploitation of the intrinsic properties of each DC subset in order to optimize the capacity of the DC network to respond efficiently to different scenarios of infection.

Abstract

Dendritic cells (DCs) comprise several subsets, and their roles in the presentation of antigens derived from pathogens, vaccines and self tissues are now beginning to be elucidated. Differences in location, life cycle and intrinsic abilities to capture, process and present antigens on their MHC class I and class II molecules enable each DC subset to have distinct roles in immunity to infection and in the maintenance of self tolerance. Unexpected interactions among DC subsets have also been revealed. These interactions, which allow the integration of the intrinsic abilities of different DC types, enhance the ability of the DC network to respond to multiple scenarios of infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The developmental pathway of migratory and lymphoid-organ-resident DCs.
Figure 2: The antigen-presentation pathways in dendritic cells.
Figure 3: The antigen-presenting functions of migratory and resident dendritic-cell populations in three hypothetical scenarios of tissue infection.

Similar content being viewed by others

References

  1. Wilson, N. S. & Villadangos, J. A. Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol. Cell Biol. 82, 91–98 (2004).

    Article  PubMed  Google Scholar 

  2. Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Wilson, N. S. & Villadangos, J. A. Regulation of antigen presentation and cross-presentation in the dendritic cell network: facts, hypothesis, and immunological implications. Adv. Immunol. 86, 241–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  5. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nature Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  6. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nature Rev. Immunol. 2, 77–84 (2002).

    Article  CAS  Google Scholar 

  8. Leibundgut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunol. 8, 630–638 (2007).

    Article  CAS  Google Scholar 

  9. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Marsland, B. J. et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22, 493–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Albert, M. L., Jegathesan, M. & Darnell, R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nature Immunol. 2, 1010–1017 (2001).

    Article  CAS  Google Scholar 

  12. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol. 6, 163–170 (2005).

    Article  CAS  Google Scholar 

  13. Villadangos, J. A. & Heath, W. R. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin. Immunol. 17, 262–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Reis e Sousa, C. Dendritic cells in a mature age. Nature Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  Google Scholar 

  15. Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol. 7, 19–30 (2007).

    Article  CAS  Google Scholar 

  16. Colonna, M., Krug, A. & Cella, M. Interferon-producing cells: on the front line in immune responses against pathogens. Curr. Opin. Immunol. 14, 373–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nature Immunol. 5, 1219–1226 (2004).

    Article  CAS  Google Scholar 

  18. Liu, Y. J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Randolph, G. J., Angeli, V. & Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Rev. Immunol. 5, 617–628 (2005).

    Article  CAS  Google Scholar 

  20. Johansson, C. & Kelsall, B. L. Phenotype and function of intestinal dendritic cells. Semin. Immunol. 17, 284–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Walton, K. L., He, J., Kelsall, B. L., Sartor, R. B. & Fisher, N. C. Dendritic cells in germ-free and specific pathogen-free mice have similar phenotypes and in vitro antigen presenting function. Immunol. Lett. 102, 16–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000). This article shows that migratory DCs constitutively transport apoptotic-cell fragments to the lymph nodes, most likely for the induction of peripheral tolerance in the steady state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turnbull, E. & MacPherson, G. Immunobiology of dendritic cells in the rat. Immunol. Rev. 184, 58–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Cavanagh, L. L. et al. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nature Immunol. 6, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  25. Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nature Immunol. 7, 1092–1100 (2006).

    Article  CAS  Google Scholar 

  26. Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22, 439–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature Immunol. 7, 663–671 (2006). This article describes the intrasplenic precursor of the lymphoid-organ-resident DC populations and establishes that this DC subset is developmentally distinct from monocyte-derived DCs.

    Article  CAS  Google Scholar 

  28. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nature Immunol. 8, 578–583 (2007).

    Article  CAS  Google Scholar 

  29. Wilson, N. S. et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102, 2187–2194 (2003). In this study, the authors used standard tests of DC maturity to establish that resident and migratory DCs are immature and mature, respectively. This confirmed a clear dichotomy in the life cycle of these two major DC groups.

    Article  CAS  PubMed  Google Scholar 

  30. Henri, S. et al. The dendritic cell populations of mouse lymph nodes. J. Immunol. 167, 741–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Voisine, C., Hubert, F. X., Trinite, B., Heslan, M. & Josien, R. Two phenotypically distinct subsets of spleen dendritic cells in rats exhibit different cytokine production and T cell stimulatory activity. J. Immunol. 169, 2284–2291 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang, Y. et al. Characterization of a phenotypically unique population of CD13+ dendritic cells resident in the spleen. Clin. Vaccine Immunol. 13, 1064–1069 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jamin, A., Gorin, S., Le Potier, M. F. & Kuntz-Simon, G. Characterization of conventional and plasmacytoid dendritic cells in swine secondary lymphoid organs and blood. Vet. Immunol. Immunopathol. 114, 224–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. McIlroy, D. et al. Investigation of human spleen dendritic cell phenotype and distribution reveals evidence of in vivo activation in a subset of organ donors. Blood 97, 3470–3477 (2001). An important study of human splenic DCs that reaches similar conclusions to those in reference 29, which are based on mouse studies.

    Article  CAS  PubMed  Google Scholar 

  35. Inaba, K. et al. The tissue distribution of the B7–2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J. Exp. Med. 180, 1849–1860 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Wilson, N. S. et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nature Immunol. 7, 165–172 (2006). This article indicates that T-cell priming against viral infections requires cross-presentation by resident DCs. It also shows that systemic activation of this DC subset impairs subsequent cross-presentation, providing one plausible explanation for the immunosuppression that accompanies sepsis and malaria infection.

    Article  CAS  Google Scholar 

  39. Sponaas, A. M. et al. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J. Exp. Med. 203, 1427–1433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tacke, F. & Randolph, G. J. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211, 609–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nature Immunol. 7, 265–273 (2006).

    Article  CAS  Google Scholar 

  44. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007). References 42 and 44 describe two clear examples in which newly generated monocyte-derived DCs take over the antigen-presenting functions normally attributed to the pre-existing resident and migratory DC subsets. In reference 42, the monocyte-derived DCs cross-present a model antigen on MHC class I, whereas in reference 44 they present Leishmania spp. antigens on MHC class II.

    Article  CAS  PubMed  Google Scholar 

  45. Krutzik, S. R. et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nature Med. 11, 653–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Yewdell, J. W. & Nicchitta, C. V. The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol. 27, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Strawbridge, A. B. & Blum, J. S. Autophagy in MHC class II antigen processing. Curr. Opin. Immunol. 19, 87–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Veeraswamy, R. K., Cella, M., Colonna, M. & Unanue, E. R. Dendritic cells process and present antigens across a range of maturation states. J. Immunol. 170, 5367–5372 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Wilson, N. S., El-Sukkari, D. & Villadangos, J. A. Dendritic cells constitutively present self antigens in their immature state in vivo, and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103, 2187–2195 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Steptoe, R. J. et al. Cognate CD4+ help elicited by resting dendritic cells does not impair the induction of peripheral tolerance in CD8+ T cells. J. Immunol. 178, 2094–2103 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Norbury, C. C., Malide, D., Gibbs, J. S., Bennink, J. R. & Yewdell, J. W. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nature Immunol. 3, 265–271 (2002).

    Article  CAS  Google Scholar 

  53. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. He, Y., Zhang, J., Donahue, C. & Falo, L. D. Jr . Skin-derived dendritic cells induce potent CD8+ T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 24, 643–656 (2006). In this study, the authors compare the role of migratory and resident DC types in the presentation of antigens that are expressed by a non-cytopathic virus versus a cytopathic one. Infected migratory DCs presenting endogenous antigens were the main inducers of immune responses to the non-cytopathic virus, but resident cross-presenting DCs were the main players in cytopathic viral infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heath, W. R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Rock, K. L. & Shen, L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev. 207, 166–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000). The first demonstration of the unique role of CD8+ DCs in cross-presentation, from the same laboratory that first discovered this phenomenon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schulz, O. & Reis e Sousa, C. Cross-presentation of cell-associated antigens by CD8α+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107, 183–189 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iyoda, T. et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 195, 1289–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valdez, Y. et al. Major histocompatibility complex class II presentation of cell-associated antigen is mediated by CD8α+ dendritic cells in vivo. J. Exp. Med. 195, 683–694 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kerksiek, K. M., Niedergang, F., Chavrier, P., Busch, D. H. & Brocker, T. Selective Rac1 inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood 105, 742–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Schnorrer, P. et al. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc. Natl Acad. Sci. USA 103, 10729–10734 (2006). A comparison of uptake, MHC class II presentation and MHC class I cross-presentation of different forms of antigen. It concludes that cross-presentation requires a specialized mechanism to handle captured antigens, and that such a mechanism occurs mainly in the CD8+ DC subset.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yrlid, U. & Wick, M. J. Antigen presentation capacity and cytokine production by murine splenic dendritic cell subsets upon Salmonella encounter. J. Immunol. 169, 108–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Caminschi, I. et al. Molecular cloning of a C-type lectin superfamily protein differentially expressed by CD8α splenic dendritic cells. Mol. Immunol. 38, 365–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Carter, R. W., Thompson, C., Reid, D. M., Wong, S. Y. & Tough, D. F. Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J. Immunol. 177, 2276–2284 (2006). In references 68 and 69, the authors elegantly show that CD8 DCs can only present antigens via MHC class II, whereas CD8+ DCs can also deliver antigens to the cross-presentation pathway.

    Article  CAS  PubMed  Google Scholar 

  70. Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P. A. & Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316, 612–616 (2007). In this article, the authors conclude that not all forms of endocytosis deliver antigens to the cross-presentation pathway. They show that antigens captured by the mannose receptor, but not those internalized by pinocytosis, are efficiently delivered to putative compartments for cross-presentation.

    Article  CAS  PubMed  Google Scholar 

  71. McKenzie, E. J. et al. Mannose receptor expression and function define a new population of murine dendritic cells. J. Immunol. 178, 4975–4983 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Edwards, A. D. et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Naik, S. H. et al. Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in FMS-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 174, 6592–6597 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Yarovinsky, F., Kanzler, H., Hieny, S., Coffman, R. L. & Sher, A. Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 25, 655–664 (2006). Together with reference 74, this study provides a clear example of the differential involvement of DC subtypes in immune responses to a pathogen that is due to differential expression of one particular receptor. The authors show that only CD8+ DCs express TLR11, which recognizes T. gondii profilin, so only this subset can present the antigen via MHC class II to induce a CD4+ T-cell response against the parasite.

    Article  CAS  PubMed  Google Scholar 

  76. Norbury, C. C. Drinking a lot is good for dendritic cells. Immunology 117, 443–451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Manickasingham, S. & Reis e Sousa, C. Microbial and T cell-derived stimuli regulate antigen presentation by dendritic cells in vivo. J. Immunol. 165, 5027–5034 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Pooley, J. L., Heath, W. R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166, 5327–5330 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Stoitzner, P. et al. Langerhans cells cross-present antigen derived from skin. Proc. Natl Acad. Sci. USA 103, 7783–7788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Corbett, A. J. et al. Antigen delivery via two molecules on the CD8 dendritic cell subset induces humoral immunity in the absence of conventional 'danger'. Eur. J. Immunol. 35, 2815–2825 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. El-Sukkari, D. et al. The protease inhibitor cystatin C is differentially expressed among dendritic cell populations, but does not control antigen presentation. J. Immunol. 171, 5003–5011 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Maehr, R. et al. Asparagine endopeptidase is not essential for class II MHC antigen presentation but is required for processing of cathepsin L in mice. J. Immunol. 174, 7066–7074 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, X., Reed-Loisel, L. M., Karlsson, L. & Jensen, P. E. H2-O expression in primary dendritic cells. J. Immunol. 176, 3548–3556 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Fallas, J. L., Yi, W., Draghi, N. A., O' Rourke H, M. & Denzin, L. K. Expression patterns of H2-O in mouse B cells and dendritic cells correlate with cell function. J. Immunol. 178, 1488–1497 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Maric, M. et al. Defective antigen processing in GILT-free mice. Science 294, 1361–1365 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Sinnathamby, G., Maric, M., Cresswell, P. & Eisenlohr, L. C. Differential requirements for endosomal reduction in the presentation of two H2-E(d)-restricted epitopes from influenza hemagglutinin. J. Immunol. 172, 6607–6614 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Villadangos, J. A., Schnorrer, P. & Wilson, N. S. Control of MHC class II antigen presentation in dendritic cells: a balance between creative and destructive forces. Immunol. Rev. 207, 191–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Lutz, M. B. et al. Intracellular routes and selective retention of antigens in mildly acidic cathepsin D/lysosome-associated membrane protein-1/MHC class II- positive vesicles in immature dendritic cells. J. Immunol. 159, 3707–3716 (1997).

    CAS  PubMed  Google Scholar 

  91. Bergtold, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23, 503–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Lennon-Dumenil, A. M. et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J. Exp. Med. 196, 529–540 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reich, M. et al. Endocytosis targets exogenous material selectively to cathepsin S in live human dendritic cells, while cell-penetrating peptides mediate nonselective transport to cysteine cathepsins. J. Leukoc. Biol. 81, 990–1001 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Pu, Z., Lovitch, S. B., Bikoff, E. K. & Unanue, E. R. T cells distinguish MHC-peptide complexes formed in separate vesicles and edited by H2-DM. Immunity 20, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Lovitch, S. B., Esparza, T. J., Schweitzer, G., Herzog, J. & Unanue, E. R. Activation of type B T cells after protein immunization reveals novel pathways of in vivo presentation of peptides. J. Immunol. 178, 122–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Cervi, L., MacDonald, A. S., Kane, C., Dzierszinski, F. & Pearce, E. J. Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J. Immunol. 172, 2016–2020 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Engering, A. J. et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27, 2417–2425 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Tan, M. C. et al. Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur. J. Immunol. 27, 2426–2435 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Shen, L., Sigal, L. J., Boes, M. & Rock, K. L. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21, 155–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Norbury, C. C., Hewlett, L. J., Prescott, A. R., Shastri, N. & Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3, 783–791 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nature Cell Biol. 1, 362–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Ackerman, A. L., Kyritsis, C., Tampe, R. & Cresswell, P. Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nature Immunol. 6, 107–113 (2005).

    Article  CAS  Google Scholar 

  104. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Ackerman, A. L., Giodini, A. & Cresswell, P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 25, 607–617 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Lizee, G. et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nature Immunol. 4, 1065–1073 (2003).

    Article  CAS  Google Scholar 

  108. den Haan, J. M. & Bevan, M. J. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8+ and CD8 dendritic cells in vivo. J. Exp. Med. 196, 817–827 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gallegos, A. M. & Bevan, M. J. Central tolerance: good but imperfect. Immunol. Rev. 209, 290–296 (2006).

    Article  PubMed  Google Scholar 

  110. Brocker, T., Riedinger, M. & Karjalainen, K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J. Exp. Med. 185, 541–550 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gallegos, A. M. & Bevan, M. J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004). The authors describe a role for cross-presentation of tissue antigens that are ectopically expressed by epithelial cells of the thymus in negative selection of autoreactive thymocytes. They also show that central cross-tolerance is mediated by thymic-resident DCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Belz, G. T. et al. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172, 1996–2000 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Belz, G. T., Shortman, K., Bevan, M. J. & Heath, W. R. CD8α+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol. 175, 196–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Neuenhahn, M. et al. CD8α+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 25, 619–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Smith, C. M. et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nature Immunol. 5, 1143–1148 (2004).

    Article  CAS  Google Scholar 

  117. Wykes, M., Keighley, C., Pinzon-Charry, A. & Good, M. F. Dendritic cell biology during malaria. Cell. Microbiol. 9, 300–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Williamson, W. A. & Greenwood, B. M. Impairment of the immune response to vaccination after acute malaria. Lancet 1, 1328–1329 (1978).

    Article  CAS  PubMed  Google Scholar 

  119. Whittle, H. C. et al. T-cell control of Epstein–Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312, 449–450 (1984).

    Article  CAS  PubMed  Google Scholar 

  120. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Benjamim, C. F., Lundy, S. K., Lukacs, N. W., Hogaboam, C. M. & Kunkel, S. L. Reversal of long-term sepsis-induced immunosuppression by dendritic cells. Blood 105, 3588–3595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yoshino, M. et al. Distinct antigen trafficking from skin in the steady and active states. Int. Immunol. 15, 773–779 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Belz, G. T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carbone, F. R., Belz, G. T. & Heath, W. R. Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol. 25, 655–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nature Immunol. 8, 181–190 (2007).

    Article  CAS  Google Scholar 

  127. Mayerova, D., Parke, E. A., Bursch, L. S., Odumade, O. A. & Hogquist, K. A. Langerhans cells activate naive self-antigen-specific CD8 T cells in the steady state. Immunity 21, 391–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Kissenpfennig, A. & Malissen, B. Langerhans cells — revisiting the paradigm using genetically engineered mice. Trends Immunol. 27, 132–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Filippi, C. et al. CD4+ T cell polarization in mice is modulated by strain-specific major histocompatibility complex-independent differences within dendritic cells. J. Exp. Med. 198, 201–209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lemos, M. P., Esquivel, F., Scott, P. & Laufer, T. M. MHC class II expression restricted to CD8α+ and CD11b+ dendritic cells is sufficient for control of Leishmania major. J. Exp. Med. 199, 725–730 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Allan, R. S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Zhao, X. et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197, 153–162 (2003). References 131 and 132 report the surprising finding that Langerhans cells are not involved in induction of T-cell responses against HSV infections of the skin. Instead, resident CD8+ DCs that cross-present viral antigens on MHC class I (reference 131) and dermal DCs that present the antigens on MHC class II (reference 132) are the main DC subsets involved.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Allan, R. S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Belz, G. T. et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA 101, 8670–8675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fleeton, M. N. et al. Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J. Exp. Med. 200, 235–245 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Villadangos, J. A. Hold on, the monocytes are coming! Immunity 26, 390–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Finkelman, F. D., Lees, A., Birnbaum, R., Gause, W. C. & Morris, S. C. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J. Immunol. 157, 1406–1414 (1996).

    CAS  PubMed  Google Scholar 

  138. Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA 99, 351–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Carbone, B. Heath, C. Kurts and K. Shortman for helpful discussions. Our work is supported by grants from the National Health and Medical Research Council of Australia and the Anti-Cancer Council of Australia (J.A.V.), a Leukemia and Lymphoma Society Scholarship (J.A.V.), and a Gottlieb Daimler- and Karl Benz-Foundation Fellowship (P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Villadangos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mater Medical Research Institute

José Villadangos's homepage

Glossary

Toll-like receptor

(TLR). A member of a family of receptors that is homologous to Drosophila melanogaster Toll. TLRs recognize conserved molecular patterns that are unique to microorganisms. The lipopolysaccharide component of bacterial cell walls is one such component. TLRs can also recognize mammalian components and contribute to autoimmunity.

Nucleotide-binding oligomerization domain (NOD) proteins

Members of a family that includes the apoptosis regulator APAF1 (apoptotic-protease-activating factor 1), mammalian NOD-LRR proteins (also known as NACHT-LRR proteins or CATERPILLERs) and plant disease-resistance gene products. Several NOD proteins have been implicated in the induction of nuclear factor-κB activity and in the activation of caspases.

RIG-I-like receptors

A family of cytoplasmic pathogen sensors that recognize viral double-stranded RNA molecules and trigger an antiviral response.

C-type lectin receptors

A large family of receptors that bind glycosylated ligands and have multiple roles, such as in cell adhesion, endocytosis, natural-killer-cell target recognition and dendritic-cell activation.

Proteasome

A giant multicatalytic protease that is resident in the cytosol and the nucleus.

Cathepsins

A class of proteases that are localized mainly in lysosomes and lysosome-like organelles.

Pinocytosis

Also known as fluid-phase endocytosis. A process of engulfment of extracellular fluid and its solutes. It can be mediated by an actin-dependent mechanism that can engulf large volumes (macropinocytosis) or by other mechanisms that result in engulfment of smaller volumes (micropinocytosis).

Phagocytosis

A process that is used by cells to internalize large particles, such as debris, apoptotic cells and pathogens, into phagosomes.

Negative selection

The deletion of self-reactive thymocytes in the thymus. Thymocytes expressing T-cell receptors that strongly recognize self peptide bound to self MHC molecules undergo apoptosis in response to the signalling generated by high-affinity binding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villadangos, J., Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7, 543–555 (2007). https://doi.org/10.1038/nri2103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing